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Abstract. Setting-up a controlled or synchronized state in a space-time chaotic structure targeting an
unstable periodic orbit is a key feature of many problems in high dimensional physical, electronics,
biological and ecological systems (among others). Formerly, we have shown numerically and experimentally
that phase synchronization [M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193
(1997)] can be achieved in time dependent hydrodynamic flows [D. Maza, A. Vallone, H.L. Mancini, S.
Boccaletti, Phys. Rev. Lett. 85, 5567 (2000)]. In that case the flow was generated in a small container
with inhomogeneous heating in order to have a single roll structure produced by a Bénard-Marangoni
instability [E.L. Koshmieder, Bénard Cells and Taylor Vortices (Cambridge University Press, 1993)]. Phase
synchronization was achieved by a small amplitude signal injected at a subharmonic frequency obtained
from the measured Fourier temperature spectrum. In this work, we analyze numerically the effects of driving
two previously synchronized chaotic oscillators by an external signal. The numerical system represents a
convective experiment in a small container with square symmetry, where boundary layer instabilities are
coupled by a common flow. This work is an attempt to control this situation and overcome some difficulties
to select useful frequency values for the driving force, analyzing the influence of different harmonic injection
signals on the synchronization in a system composed by two identical chaotic Takens-Bogdanov equations
(TBA and TBB) bidirectionally coupled.

1 Introduction

Time dependent patterns in far from equilibrium systems
are very common in many fields of science like physics,
chemistry, biology and engineering [4]. Convection in flu-
ids, plasmas, crystallization processes, wide aperture semi-
conductor lasers, or chemical reaction-diffusion systems
are only a few of technologically important examples
where control and synchronization of space-time chaotics
flows could be important [5].

Stabilization on these kind of flows could be necessary
in both, uniform or patterned unstable states when de-
position of thin or thick films on a substrate are from a
liquid phase. It is usually important to control the liquid
phase before deposition to avoid defects or cracks in the
film or to reproduce a desired matrix of flows to improve
the process. In other applications like mixing in microflu-
idics, the useful state could be the chaotic one in order to
improve the mixing results.

To optimize both kind of processes it is necessary to
control them in order to select one of the suitable states,
even if they are naturally unstable.

There are experimental problems to control or syn-
chronize a chaotic time dependent spatial state in an ex-
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periment, and among them, probably the more relevant
are to choose the sampling frequency and the minimum
number of spatial points to feedback the control signals.
Most of the theoretical methods assume that all locations
in an experiment are accessible, something difficult to ac-
complish in real experiments.

The magnitude of the problem of determining the min-
imum number of controllers can be understood consider-
ing that in some numerical simulations [6] synchronization
in a time dependent chaotic state between two identical
Hele-Shaw cells heated from below, was impossible with
less than 700 points of interconnection, clearly a situations
almost impossible to be get experimentally in thermal con-
vection.

Theory and experiments have shown that space-time
control acting on relatively few points is possible if the
space-time dynamics equations of the system are well
known [7]. In that case, many efforts have been done dur-
ing the last ten years to develop a general control algo-
rithm for space-time chaotic systems, principally consid-
ering modeling equations [8,9], coupled map lattices [10] or
synchronization using a complex networks approach [11].

Control of real physical systems described by analyt-
ical solutions derived from first principles (like Navier-
Stokes equation), usually present problems to fit with the
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experiments, because time-dependent regimes normally
appear at high supercritical control parameter values,
where a perturbative method can not be applied and many
approximations must be done. Normally we work with ap-
proximated models and to control a previously targeted
unstable chaotic state becomes a hard task. But experi-
mentalists can observe real data from outputs, symmetries
in patterns or instability regions and long signal sequences
in previously choose positions can be obtained. This is the
common approach used to reconstruct the phase space
from an experiment, and selecting sampling positions and
frequencies.

A numerical model to simulate in advance the experi-
ment is always a very useful tool for designing, even if it
is approximate.

In this work, we numerically analyze the problem of
driving a synchronized state between two identical chaotic
oscillators. A normal situation in thermal convection is
to have quasiperiodic dynamics going to space-time chaos
in pre-turbulent states when the control parameter is in-
creased sufficiently. Under this conditions, the Fourier
spectrum for a variable (like temperature) displays over-
imposed to the wide band frequencies (typical for a pre-
turbulent state) an enhancement around the band of fre-
quencies that previously have been dominant.

We reconstruct this situation coupling two hyper-
chaotic oscillators modeled by a system of equations that
previously was used to represent time-dependent convec-
tion in a small aspect ratio container (SAR) with square
symmetry D4 [12–14].

The problem of analyzing the driving of two cou-
pled oscillators was recently reconsidered by Anishenko
et al. [15] who looks for the effects on phase synchroniza-
tion of two coupled Van der Pol oscillators when they are
forced by an external harmonic signal.

In the same direction, we use here a numerical ap-
proach to study a dynamical system representing our ex-
periment driven by different external harmonic signals
with the following questions: is there something similar
to a “resonance” in (hyper)chaotic systems? How can we
detect this resonance in a wide band experimental spec-
trum?

To answer these questions, the paper is organized as
follows: Section 2 presents some details about the dynam-
ics of the coupled system, followed by other details about
the synchronization and the problems that we had to ob-
tain useful data from an experimental Fourier spectrum.
Section 3 presents details about the results obtained for
different driving forces related to the signals used. In Sec-
tion 4 we include the effect of noise (correlated and non-
correlated). Conclusions close the paper in Section 5.

2 The oscillating system
Two identical oscillators A and B have been coupled to
obtain the chaotic synchronized dynamical system that
we will drive. Each one of them is a four dimensional
Takens-Bogdanov’s ODE system. The symmetry proper-
ties of the dynamical equations are described by the sym-
metry group D4 composed by reflection τ and rotation ρ

Fig. 1. Interconnection scheme. The harmonic signal fE is
always injected to the variable x of oscillator A.

as is described in equation (1):

τ : (x, y, z, w) → (z, w, x, y)
ρ : (x, y, z, w) → (−x,−y, z, w). (1)

These symmetries play an important role in the way that
we have to connect A and B, as it is shown in Figure 1.

As it was shown in [12] the patterns in the experiment
follows the same symmetry breaking bifurcations sequence
described by the Takens-Bogdanov equations [16]. This
equation has a Codimension 2 point at the origin and in-
creasing the control parameter (associated with tempera-
ture gradient) the pattern becomes time-dependent after a
pitchfork bifurcation preserving a part of the original sym-
metry (a diagonal of the square). Time dependent states
are firstly chaotic oscillations in one of the two symmet-
rical branches (one of these diagonals), and then by an
heteroclinic connection, recovers all the space for the vari-
ables hidden by the pitchfork involving also oscillations in
the other diagonal. Details about the dynamics and the
experiments related can be found in cited references.

Looking more in depth this set of equations we observe
for the heteroclinic connection parameters that it could be
considered composed by two bi-dimensional non-linearly
coupled oscillators. This detail is important for choosing
a coupling scheme that preserves the original symmetry.

The ODE system for this oscillator is described in
equation (2),

ẋ = y

ẏ = μx + x
(
a

(
x2 + z2

)
+ bz2

)
(2)

ż = w

ẇ = μz + z
(
a

(
x2 + z2

)
+ bx2

)
(3)

where (x, y, z, w) are the variables and a, b and μ, the pa-
rameters that have to be adjusted to fit the experiment.
In time dependent regimes the system shows a complex
chaotic behavior, with more than one positive Lyapunov
exponent (or unstable directions) near a fix point (hy-
perchaos) [17]. Calculation of the Lyapunov exponents,
eigenvalues and eigenvectors are necessary to determine
the synchronization regions and it has been published pre-
viously [18]. An important fact to mention is that this dy-
namical system (with a riddle basin) is not an attractor,
neither by Milnor’s definition nor Lyapunov’s one [19,20].
It is a non-attracting set in some volume of the space,
centered on the origin, and works as a repellor in the rest
of the space. This fact has implications on dynamics so-
lutions that can really be observed in an experiment. In
the experiment, provided that the control parameter is not
too high, convection is forced to keep the symmetry by the
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square boundary conditions and to remain in a confined
region of variables. Not all the possible mathematical so-
lutions have been observed experimentally. If the control
parameter is too high, the preturbulent state is destroyed
together with the pattern, appearing waves and bubbles.
This set of equations cannot represent this new state.

The coupled system

Symmetrical coupling of two identical Takens-Bogdanov
through one variable x has been presented in refer-
ence [18]. Synchronization regime has been analyzed us-
ing different coupling schemes (symmetric or asymmetric)
and considering the coupling as a direct function of the
error between both systems (acting as a feedback loop).
Phase synchronization (PS) has been obtained using se-
lected values for parameters that must be fine-tuned to fit
the Lyapunov exponent windows [21]. The synchronized
regimes obtained in this case are not very stable and de-
pend strongly on the coupling coefficient value.

Here we present a different approach. To obtain a
robust synchronization manifold we recover for the cou-
pled system the symmetry of each one oscillator. This
is achieved by coupling the feedback on two different
variables (x and z). Internal symmetry of the equations
couples variables by pairs (x and y to z and w). In-
troducing the coupling bidirectionally between A and B
through x and z, we are constructing a closed “ring struc-
ture” that provides the robustness and complete synchro-
nization (CS) is obtained. This was impossible to obtain
in the case of a symmetrical coupling scheme based on
only one variable [22]. The equations for the coupled sys-
tem are now transformed in equation (4), where variables
are named by the subscripts (A, B) corresponding to each
original system. The coupled system is again hyperchaotic
(having more than one positive Lyapunov exponent) and
chaos is not completely suppressed by synchronization.

ẋA = yA + εx (xB − xA)

ẏA = μxA + xA

(
a

(
x2

A + z2
A

)
+ bz2

A

)

żA = wA

ẇA = μzA + zA

(
a

(
x2

A + z2
A

)
+ bx2

A

)

ẋB = yB

ẏB = μxB + xB

(
a

(
x2

B + z2
B

)
+ bz2

B

)

żB = wB + εz (zA − zB)

ẇB = μzB + zB

(
a

(
x2

B + z2
B

)
+ bx2

B

)
. (4)

The coupling terms εx(xB − xA) and εz(zA − zB) can be
interpreted as the feedback signals between both systems.
These factors are equal to zero when complete synchro-
nization is achieved and both systems reproduce the same
trajectory on the synchronous manifold separately with-
out any feedback between them. This kind of coupling
extends the inner symmetries of each equations system to
the coupled one which has a higher dimension. The results
can be seen in Figure 2.

Variables (x, y, z, w) in A are completely synchronized
to (x, y, z, w) in B. This mean that xA is complete syn-
chronized to xB and so on. Temporal signals displaying
the synchronized state will be shown in the next para-
graph together with effects of a driving signal.

Figure 2a displays the Fourier spectrum for one vari-
able (variable xA) and low frequencies detail is in Fig-
ure 2b. This figure shows a characteristic spectrum of a
chaotic signal. Synchronization can be appreciated in Fig-
ure 2c, where the synchronization error function against
time goes to zero after a short transient.

This information, (that can be easily obtained from an
experiment), is not sufficient if we need to choose a fre-
quency for driving the system. As in many other cases (like
in the Rössler attractor for the “funnel” parameters), here
also is not possible to construct a Poincaré section, and
under these restrictions we cannot define an “analytical
phase” [1].

To overcome this problem we constructed an histogram
considering the period between two neighbors maximum
(or minimum) obtained from a very long data file of the
output signal. The amplitude in the histogram represent
at each time value, the frequency (number of times) that
this period value appears in the output signal, being the
highest peak the most visited period. Resolution in time
can be controlled choosing the width of the time inter-
val to count, and in amplitude, it is one count over the
total number of counts. A typical histogram constructed
from the output signal of the coupled system is shown in
Figure 2d. From this histogram, with periods distributed
around two main peaks, we can obtain the most recurrent
values of the frequencies appearing in the system.

3 Driving with noiseless harmonic signals

By using the information obtained from the recurrence
time distribution is possible to analyze the effects of a
noiseless harmonic signal injected to the synchronized sys-
tem (fE as shown in Fig. 1).

We will consider firstly the effects of signals with fre-
quencies fitting one of the peaks observed in the time re-
currence plots, to be compared with the effects obtained
from the injection of other signal with a frequency in the
middle of this peaks. In all the cases the amplitude of the
signal injected will be the same, and a small fraction (1%)
of the variable value.

3.1 Effect of driving with a “resonant” frequency

We use here the word “resonance” in a wide sense, indi-
cating that the period of the injected harmonic signal is
coincident with one of the peaks in the histogram. Con-
sidering the recurrence plot in the Figure 2d, firstly we
injected a signal coincident, with the low-time peak in the
recurrence histogram (that is, at high frequencies region
f = 1

tr
. In the values of the system: tr = 5.3 and conse-

quently fE = 0.189) as it is represented overimposed in
Figure 3. The amplitude of the signal injected is 1% of
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Fig. 2. (Color online) (a) Fourier spectrum for variable x1. (b) Zoom on low frequencies. (c) Error function for synchronization
in logarithmic scale. The function going to zero against time illustrate the necessary condition for CS. (d) Histogram of recurrent
times (in seconds) that allow us to obtain the system characteristic times.
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Fig. 3. (Color online) (a) Original histogram and harmonic signal tr = 5.3 (fE = 0.189). (b) New histogram after signal
injection (note the change of scales).

the maximum value of variable x. This figure display in
(b) the new histogram obtained after the injection of the
signal. In Figure 4 appear in (a) the original Fourier spec-
trum of the signal x, and in (b) the spectrum after the
injection of the signal. It can be seen in the figures that
even being the injected amplitude a small fraction of the
variable, it moves all the spectrum to the lower frequen-
cies region, but this effect is less noticeable in the Fourier
spectrum that in the histogram.

The results in the figures has been calculated for x
variable, but they are representative also for y, z, w.

In Figure 5 long sequences for all the variables are
displayed beginning in (a) for the variable x (xA in red,
xB in blue). It should be noted that synchronization is
kept even when the driving signal modify the spectrum
profile.

Then, we injected a signal with frequency coincident
with the peak in the long-times region of the histogram.
In this case: tr = 8.92 and fE = 0.112, as it is repre-
sented in Figure 6a. The amplitude of the signal is the
same that in the former case: 1% of the variable x. Fig-
ure 6b shows the new histogram obtained. As before, in
spite of the small amplitude, the driving signal moves the



H. Mancini and G. Vidal: Dynamics of two coupled chaotic systems driven by external signals 61

0 0,189 0,5 1 1,5
10

−5

10
0

10
5

Frequency (Hz)

P
ow

er
Sp

ec
tr

um
(d

B
)

(a)

0 0.189 0,5 1 1,5
10

−2

10
0

10
2

10
4

10
6

Frequency (Hz)

P
ow

er
Sp

ec
tr

um
(d

B
)

(b)

Fig. 4. (a) Original spectrum and harmonic signal fE = 0.189 (tr = 5.3). (b) New spectrum after signal injection.
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Fig. 5. (Color online) Temporal sequences for x, y, z, w respectively for fE = 0.189 (system A in red, and B in blue).

center of the spectrum to the frequency region where this
signal is injected. Efficiency is higher when the frequency
is chosen at the peak of the histogram. As in the former
case, histogram is moved to long times (low frequencies).
In both cases, the oscillators tend to lock with the ex-
ternal frequency and complete synchronization is kept for
variables x and z. Variables y and w remain in phase syn-
chronization as it is shown in Figure 7.

3.2 Driving with a frequency in the middle
of the time-distribution

When a perturbation harmonic signal with frequency cor-
responding to the average in between the two peaks in the
original histogram is injected, as it is shown in Figure 8a
(tr = 7.29, i.e., fE = 0.137) the effects are very noticeable.
In (b) can be observed as the two peak structure of the
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Fig. 6. (Color online) (a) Position of the injected signal in the original histogram tr = 5.3 s (fE = 0.112). (b) Histogram after
the injection of the signal (note the change in scales).
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Fig. 7. (Color online) Temporal sequences for x, y, z, w respectively for fE = 0.112 (system A in red, and B in blue).

initial time-recurrence distribution is kept, but compacted
in a narrower band and moved to higher frequencies.

The results of the signal injected are shown in Fig-
ure 9. In (a) we display the original Fourier spectrum for
the variable x in the coupled system and the position of
the injected signal. In (b) appears the new Fourier spec-
trum, obtained after the perturbation. There are strong
differences with the unperturbed system (sharper frequen-

cies and harmonics appears that appear overimposed to a
wide band spectrum). This indicate that a weak signal
has produced a new dynamic state. The corresponding
time sequences of the variables are shown in Figure 11,
note that complete synchronization is preserved for all the
variables.

The transition to the new dynamical state can be seen
in the plane y vs. x of the phase space diagram appearing
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Fig. 8. (Color online) (a) Position of the injected signal in the original histogram tr = 7.29 (fE = 0.137). (b) Histogram after
the injection of the driving signal (note the change in vertical scale).
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Fig. 9. (a) Original Fourier spectrum indicating the position of the frequency of the signal injected fE = 0.137 (tr = 7.29).
(b) Spectrum obtained after the injection of the perturbation signal with (amplitude 1% of the maximum value in xA).
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Fig. 10. (a) Original phase space x vs. y. (b) Phase space transformation after the injection signal at fE = 0.137. All the
variables remain completely synchronized.

in Figure 10. This plane is representative of the space
phase (that is four dimensional [22]). The new narrow
band Fourier spectrum and the diagram correspond to
a more symmetrical and less complex dynamics with the
signal remaining in the heteroclinic connection between
the two asymmetrical attractors.

The change in dynamics of chaotic attractors by in-
jection of weak harmonic signals have been studied pre-

viously, i.e. [23,24], appearing new states, including chaos
suppression, bifurcations, intermittences, etc., as it was
mentioned. A very clear analysis of the effects of signal
injection to low dimensional systems (Lorentz, Rössler,
Van der Pol and Takens Bogdanov) related with symme-
tries, can be found in [25] for a single attractor. Injection
in coupled systems (two couped Van der Pol) [15] also
display different dynamical states in a phase diagram (in
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Fig. 11. (Color online) Temporal sequence for x, y, z, w respectively for fE = 0.137.

the parameter space). The hyperchaotic system presented
here is the coupling of two previously chaotic systems in
a complete synchronization state. This complex system,
as the previous cited, also display changes in the dynamic
state by the injection of a weak harmonic signal and in a
certain sense, this paper can be considered an extension of
these previous works to an hyperchaotic high dimensional
system. It should be remarked here, that the injection of
a small signal in this case, even changing the dynamical
state of the coupled chaotic systems, the transition to the
new attractor is without chaos suppression, and with all
the variables of the original two chaotic systems remaining
in complete synchronization (Fig. 11).

4 Noise effects

We consider also the effect of a noisy signal in the last
example (frequency of the injected signal centered in the
time-recurrence distribution) and considering two differ-
ent kinds of harmonic signals with added noise. Firstly, we
add a uniform amplitude noise (10% of the injected sig-
nal), covering uniformly all the frequency band centered
around the frequency of the forcing signal, and then, a
signal x coming from a Rössler attractor centered in the

same frequency with a maximum amplitude less than 10%
of the driving signal amplitude (that is, in both cases the
amplitude added is 0.001 of the variable x).

4.1 Uniform noise

The effects of adding uniform noise centered around the
frequency of the signal injected in x (fE = 0.137) is shown
in Figure 12. In (a) the histogram shows that a signal with
noise partially destroys the effects obtained by injection
signal observed with a noise-free signal. In (b) we observe
that variables x in A (red) and B (blue) systems remain
in complete synchronization in spite of the noise presence.

It was verified that for lower values of noise in the
signal, the dynamics shown in Figure 11 was recovered. It
was checked to prevent numerical artifacts.

4.2 Injection signal from a Rössler attractor

Using the output x obtained from a Rössler attractor to
add as a complex signal to the injection signal fE with
an amplitude similar to the noise amplitude (10%). As
in the former case, we want to observe if there are some



H. Mancini and G. Vidal: Dynamics of two coupled chaotic systems driven by external signals 65

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Return Time

(a)

1.25 1.251 1.252 1.253 1.254 1.255 1.256 1.257 1.258 1.259 1.26

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

(b)

Fig. 12. (Color online) (a) Histogram for an injected signal at fE = 0.137 with 10% in amplitude of noise added to fE .
(b) Variables xA = xB complete synchronized.
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Fig. 13. (Color online) (a) Histogram for a signal injected at fE = 0.137 with correlated noise. (b) Time sequences for variables
xA = xB.

difference in the effects between a small chaotic (determin-
istic) signal, and a noise without correlation. Amplitude
used in both cases are similar, and the results obtained are
shown in Figure 13. In (a) we observe that the effect of the
injection signal with the chosen frequency (fE = 0.137)
does not disappear completely with addition of this kind
of noise. This is a different behavior from the former case
(noise uncorrelated). New intermittency regions interrupt-
ing the dynamics in the heteroclinic connection appear as
the main effect (see Fig. 13b compared to Fig. 11a), but
keeping the complete synchronization state, an interme-
diate dynamics between noise-free signal and a driving
signal with uniform noise added.

5 Conclusions

We presented here the effects of a harmonic signal injec-
tion in a hyperchaotic dynamic system composed by two
previously synchronized Takens-Bogdanov systems. Dy-
namics was set in complete synchronization regime and in

the heteroclinic connection condition by adjusting param-
eters. This system was used because it has been demon-
strated to be a useful model in some thermoconvective
patterns appearing in experiments with square symme-
try imposed by the lateral boundary conditions. To con-
trol this system with an external signal it is necessary to
have some criteria to select the injection frequency. This
information cannot be obtained clearly from the Fourier
spectrum neither in numerical systems nor in experiments.
Another problem in this system, as in others like the well
known Rössler attractor in the “funnel” parameters con-
ditions, is that topology in this higher dimension system
inhibits to construct Poincaré sections to study the phase.

To select adequately the frequency for the injection sig-
nal and to avoid trial and error procedures, we proposed
here to take profit from histograms constructed ad-hoc.
The amplitude in this histograms represents the number
of times that appear a period interval between two neigh-
bours maximum (or minimum), when are measured from
a long temporal sequence obtained in the numerical model
or from a variable output in experiments. It represents the
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distribution of the most characteristics times appearing in
the sequence. By using this information, we analyzed the
effects of injection of harmonic signals with different fre-
quencies on the system, coincident or not with the char-
acteristic times. The results obtained and the addition of
noise to the signals have been discussed. Different states
in the chaotic dynamics are observed and, in spite of the
hyperchaotic character of this system, we have shown that
some control can be obtained with very small signal ampli-
tude (1%), preserving the complete synchronization state
for all the variables of the system.
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