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Abstract. We report experimental and theoretical results of the effect that
particle shape has on the packing properties of granular materials. We
have systematically measured the particle angular distribution, the cluster size
distribution and the stress profiles of ensembles of faceted elongated particles
deposited in a bidimensional box. Stress transmission through this granular
system has been numerically simulated using a two-dimensional model of irregular
particles. For grains of maximum symmetry (squares), the stress propagation
localizes and forms chain-like forces analogous to those observed for granular
materials composed of spheres. For thick layers of grains, a pressure saturation
is observed for deposit depths beyond a characteristic length. This scenario
correlates with packing morphology and can be understood in terms of stochastic
models of aggregation and random multiplicative processes. As grains elongate
and lose their symmetry, stress propagation is strongly affected. Lateral force
transmission becomes less favored than vertical transfer, and hence, an increase
in the pressure develops with depth, hindering force saturation.
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1. Introduction

Granular materials are of great significance nowadays in engineering and physics [1]–
[4]. Huge experimental and theoretical efforts have been made to try and obtain a
better understanding of the global behavior of these many-body systems in terms of local
particle–particle interactions. In granular packing, forces are generally transferred from
particle to particle through contacts and force chains which can branch at a grain and
generate a beautiful force network [5]–[9]. Particles outside these force chains support
practically no load and can be removed from the packing without changing the global
mechanical properties of the system. Additionally, in granular materials the frictional
interactions between particles are generally nonlinear and even discontinuous. This makes
it very difficult to predict and control their behavior and opens up many conceptual
challenges regarding their description [1]–[4].

Despite the fact that granular media, such as rice, lentils or pills, are often composed of
grains with anisotropic shapes, most experimental and theoretical studies have concerned
spherical particles [1]–[3]. In the last decade many different studies have proved that
the introduction of modifications in the particle shape may give rise to completely
different physical scenarios [10]–[14]. These include the effect of particle shape on
packing fraction [11, 12], wall pressures in a silo discharge [13], coordination number [14],
jamming [15], and stress propagation in granular piles [16]. Despite these efforts, the
aspect ratio has only very recently been systematically modified to analyze the special
features that particle shape asymmetry may introduce in the packing [11], [17]–[19].
Moreover, there is currently increasing interest in the effect that faceted particles have on
the global behavior of granular materials [20, 21]. Angular and faceted shapes are common
in geomaterials and very important in civil-engineering applications [22]. In this work we
present a systematic theoretical and experimental study of the structural and mechanical
properties of deposits of flat faceted particles and discuss the impact that the aspect ratio
has on the packing properties of this type of granular media.

The paper is organized as follows: in section 2 the experimental procedure is described
in detail; in section 3 we review the theoretical model used in the numerical simulations.
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Figure 1. In (a) we show a photograph of the experimental setup. S, two-
dimensional silo; H, hopper; B, cardboard box. On the right, there is a zoom of
the d = 5.4 rods deposited in the bulk of the granular layer. In (b) there is a
graphical representation of the contact between two particles. Their interaction
is characterized by the overlapping area whose center of mass is at A. The contact
branch vector, �lci , joins the center of mass of the particle i and the center of mass
of the overlap area. The intersection segment (thick line) identifies the normal,
n̂c, and tangential t̂c, directions associated with the contact.

The results of the deposit morphology are reported in section 4 and the details of
the micromechanics in section 5. Finally, there is a summary of our conclusions and
perspectives.

2. Experiment

The experimental setup consists of a two-dimensional silo of 1.1 mm thickness, 180 mm
width and 790 mm height (figure 1). The silo is built with two glass plates separated
by two stainless steel strips of 1.1 mm thickness so that the granular material is confined
in a monolayer between the plates. The bottom of the silo is flat and formed by two
facing metal pieces whose edges touch each other. The particles used in this study are
monodisperse stainless steel rods of 1.0 mm diameter and two different lengths (2.4 and
5.4 mm). From now on we will use d, the particle aspect ratio, to characterize the two
kinds of rods (d = 2.4 and 5.4). It is important to note that the borders of the rods are
truncated cones of 0.2 mm length, 1.00 mm long diameter and 0.80 mm short diameter
as shown in the zoom of figure 1. More than 5 × 104 and 2 × 104 particles are necessary
to fill the silo with d = 2.4 and d = 5.4 rods respectively.

The granular sample is introduced from the top of the silo through a hopper by
pouring the grains along the whole width of the silo in a distributed manner. The feed
rate is measured to be around 200 particles per second for the case of 2.4 mm rods and
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around 80 particles per second for the case of 5.4 mm rods. Then, after all the particles
are deposited, a standard Nikon D40X 10.2 megapixel camera is used to take pictures of
the grains inside the silo at two different windows whose width is slightly longer than the
width of the silo. The first window covers the region going from the bottom to 110 mm
height and the second one covers the region going from 290 to 410 mm height. The images
are stored in a computer for further processing and the silo completely emptied by pouring
the rods into a cardboard box before a new realization is performed.

Under the proper front illumination the rods reflect an elongated white spot of light,
as displayed in the zoom of figure 1. Image processing software is used to identify the
position of every rod and its orientation, with a resolution that in most cases was smaller
than 0.03 rad. In order to obtain good statistics of the rod orientation and cluster size
distributions we performed 100 depositions for each sample, which means that in each
window we analyzed more than 7 × 105 and 3 × 105 rods of 2.4 and 5.4 mm length
respectively.

3. Model

Since the deposits of experimental rods are quasi-bidimensional, we have performed
molecular dynamics simulations of a two-dimensional granular medium composed of
identical rectangular particles of aspect ratio d, in units of the shorter side of the particle.
The N particles that compose each sample are continuously added at the top of a box
with a feed rate of (714/d) particles per second and deposited under the effect of gravity.
The box has a width a and height h with lateral and bottom boundaries made of fixed
particles to mimic rigid walls. The container width a is always rescaled to the particle
aspect ratio a = 32×d. The simulation runs until the kinetic energy per particle is several
orders of magnitude smaller than the initial value, and the stresses no longer vary with
time. We have simulated 4000 particles, and the results are averaged over at least fifty
different configurations.

We account for particle contact interactions through a recently introduced two-
dimensional model, which covers a large variety of grain anisotropies [23]–[25]. In this
simplified model, when two particles, i and j, of masses mi and mj come into contact
they do not deform. Their interaction is simply defined by the contact overlap area and
the particles’ relative tangential displacement. The vector joining the center of masses of

particle i and the overlap area is referred to as the contact branch vector, �lci as shown
in figure 1(b). The overlap area is characterized by the contact points between the
two particles. These two points define a connection line; normal, n̂c, and tangential,
t̂c, components of the contact force are defined with respect to this line. Specifically,
we consider the normal vector as pointing toward particle i, and the tangent vector as
pointing in the same direction as the tangential component of the velocity of particle i,
as depicted in figure 1(b). When two vertices overlap with the same side, no special care
is necessary as long as the used parameters are always such that the maximum overlap
is much smaller than the particle size. In the very unlikely situation where two vertices
of one particle overlap with a pair of vertices of a second particle, leading to full face
to face interaction, the contact surface is defined by the two middle points between the
corresponding closest pairs of vertices. The other steps of the procedure remain the same.

The force associated with contact c acting on particle i is applied at the center of
mass of the overlapping area (point A in figure 1(b)), and it is the sum of elastic, �F e,c, and
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viscous, �F v,c, contributions. The total contact force acting on particle i, �F c
i = T ct̂c+N cn̂c,

decomposes into normal and tangential components. T c satisfies the Coulomb constraint,
T c = max(N c

s , (
�F e,c + �F v,c) · t̂c), where the total normal static force, N c

s , is proportional

to the total normal force, N c = (�F e,c + �F v,c) · n̂c, through the static friction coefficient μ;
N c

s = μN c.
The contribution of the elastic force to the total force can be decomposed as

�F e,c = F e,c
n n̂c + F e,c

t t̂c, (1)

where the normal component of the elastic force is proportional to the overlap area A,
divided by a characteristic length Lc of the overlap area, F e,c

n = −knA/Lc. The value
of Lc is estimated as 1/Lc = 1/(2(1/ri + 1/rj)), where ri, rj are the diameters of circles
of the same area as particles i and j, respectively [25]. Note that Lc is constant for a
monodisperse medium. The tangential elastic force is taken as proportional to the elastic
elongation ξ of a contact Cundall–Strack’s spring [26], F e,c

t = −ktξc, where kt is the
tangential stiffness. The elastic elongation is zero when the overlap starts and follows the
kinematic condition

dξc (t)

dt
= vc

t , (2)

which evolves as long as there is an overlap between the two particles. In the previous
expression vc

t = (�vc
i − �vc

j) · t̂c stands for the tangential component of the relative contact
velocity of the overlapping pair, while the normal component of the relative velocity follows
straightforwardly, vc

n = (�vc
i − �vc

j) · n̂c.
The dissipative force at the contact can also be decomposed into normal and tangential

viscous force contributions, F v,c
n = −mrνnv

c
n and F v,c

t = −mrνtv
c
t , respectively. Here,

mr = mimj/(mi + mj) stands for the pair’s reduced mass, while νn and νt are the normal
and tangential damping coefficients, respectively. The force on particle j associated with
contact c follows and ensures overall momentum conservation.

Using the interactions described above, the evolution of the system is given by
Newton’s equations of motion,

mi�̈ri =
∑

c

�F c
i − mg êy, (3)

Iiθ̈i =
∑

c

(�lci × �F c
i ) · êz, (4)

where g represents gravity and Ii stands for the particle moment of inertia. The sums in
c run over all the particles in contact with the particle i, and we have assumed that the
two-dimensional motion of the grains takes place in a plane normal to êz.

The equations of motion, equations (3) and (4), are integrated using a fifth order
predictor–corrector algorithm with a numerical error proportional to (Δt)6 [27], while
the kinematic tangential relative displacement, equation (2), is updated using an Euler
algorithm.

In order to model hard particles, the maximum overlap must always be much smaller
than the particle size; this is ensured by introducing values for normal and tangential
elastic constants, kt/kn = 0.1 and kn = 103 N m−1. The ratio between the normal and
tangential damping coefficients is taken as νn/νt = 3, while gravity is set to g = 10 m s−2.
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For these parameters, the time step should be around Δt = 10−6 s. Although the results
we will describe are generic for hard particles, to achieve quantitative comparison with
experimental data, we have carried out numerical simulation in which we change both
the normal damping coefficient and the static friction coefficient. Thus, we have ensured
that the kinetic energy loss and the dynamics of sediment formation are analogous to
those seen experimentally. We have converged to νt = 1 × 103 s−1 and μ = 0.6 as best
fit parameters. In all the simulations reported here, we have kept the previous set of
parameters and only the particles’ aspect ratio has been modified. We have also carried
out additional runs (data not shown) using other particles’ parameters, and have verified
that the trends and properties of the quantities we subsequently analyze are robust to
such changes.

4. Morphology of the rod deposits

Figure 2 shows the rod packings obtained numerically for different aspect ratios from d = 1
(squares) to d = 7. The local mean value of the contact force, normalized by its average
value within the whole system, is displayed as a color image on a log-scale. The pictures
for squares (d = 1) reveal the development of a force network, an intrinsic characteristic of
granular solids. Moreover, the interparticle force distribution decays exponentially [17]. In
contrast, for elongated rods the force is transmitted much more homogeneously, leading to
a visible increase on the force with the deposit depth. Force transmission is characterized
in this case by a Gaussian distribution [17].

In order to characterize the packing morphology, we first examine the orientations
of the particles both numerically and experimentally. The distributions of particle
orientation f(θ) with respect to the horizontal are illustrated in a polar plot in figure 3
for d = 1, 2.4 and 5.4. The agreement between the experimental and numerical results
demonstrates the predictive accuracy of our numerical simulation scheme. It can clearly
be seen that long particles most probably lie parallel to the substrate (θ = 0 and π),
while the most unlikely position corresponds to standing rods (θ = π/2). This result is in
excellent agreement with previous observations of rod packings [28]. Experimentally, for
elongated particles the fraction of horizontally aligned particles is larger than in computer
simulations. We believe that in experiments, the slightly round end of the steel rods
prevents vertical alignment and favors particle rotation toward a horizontal orientation.
In simulations, the strict angular shape results in an increase in the number of vertically
oriented particles. As the aspect ratio decreases, there is a shift in the most probable
orientation, leading to a peaked distribution at an intermediate orientation. For squares,
the most probable orientation turns out to be θ = π/4, i.e. the squares have one of their
diagonals parallel to gravity. In all cases the orientation distribution displays an expected
symmetry with respect to θ = π/2, i.e. the direction of gravity. To obtain the particle
orientation distributions we have disregarded the contribution of particles located close
to the system walls, along which rods display a strong preferential alignment. The effect
of the walls, which can be significant in stress transmission, as reported previously in the
case of discs [29], needs to be systematically studied in a future work.

The packing morphology has also been examined through the particle radial
distribution function, which can be expressed as:

g(r) =

〈
N(r + δr)

2πrδrρ

〉
, (5)

doi:10.1088/1742-5468/2010/06/P06025 6
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Figure 2. Packings of particles obtained for different aspect ratios, numerical
graphs for d = 1, 2.4, 5.4 and 7. The color map displays on a log-scale the local
mean value of the contact forces on each particle, normalized by the average value
within the whole system.

where ρ = NT /S is the average number of rods per unit of area in the whole packing
and is measured by counting the total number of rods NT whose center of mass lies in
the analyzed area. N(r + δr) accounts for the number of particles with their center of
mass at a distance r within a differential area δS = 2πrδr. In figure 4(a) and (b), the
radial distribution function, g(r), is illustrated for the experimental and the numerical
deposition of particles with d = 2.4 and 5.4. In both cases the first result that becomes
apparent is the existence of peaks at r = 1, 2, 3, . . ., which correspond to structures where
2, 3, 4, . . . rods are perfectly aligned with their long faces parallel each other (labeled as
LL in the graphs). Additionally, other peaks are present at r = 1.7, 2.7, . . . for d = 2.4,
and at r = 3.2, 4.2, . . . for d = 5.4. These correspond to rod structures where a long face
is aligned with a short face and are labeled as LS in the figures. Finally, we also observe
two local maximums in r = 2.4 and 5.4 for d = 2.4 and 5.4 respectively. These peaks
correspond to rods aligned by their short faces and are labeled in the graphs by SS.

In order to gain further insight into the local structure of rod alignment, we have
measured the radial orientational function Q(r), defined as

Q(r) = 〈cos (2(θi − θj))δ(rij − r)〉 (6)

where θi and θj are the angular orientations of particles i and j, respectively.
This distribution function provides additional quantitative information on the local

structure of the rod packings because configurations where the two rods are perpendicular
to each other (LS configurations in figure 4) contribute −1 to Q(r), while rods aligned

doi:10.1088/1742-5468/2010/06/P06025 7
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Figure 3. Polar orientation distributions of particles for several aspect ratios.
Experimental and numerical results are shown for comparison.

Figure 4. Radial distribution functions obtained experimentally (�) and in
numerical simulations (continuous line) for rod deposits with different aspect
ratios, d. (a) d = 2.4 and (b) d = 5.4.

along their long faces (LL configurations) or along their short faces (SS configurations)
contribute 1. Experimental and numerical data for d = 2.4 (figure 5(a)) and d = 5.4
(figure 5(b)) are shown for comparison. As expected, all the configurations observed
in figure 4 are also recovered by Q(r), which displays maximum peaks for LL and
SS configurations and minimum peaks for LS configurations. Furthermore, the Q(r)
signals the presence of additional structures, like LS at r = 5.2 for d = 5.4, which
are harder to identify from the radial distribution function. The results of Q(r) for
d = 5.4 display higher values for experiments than for simulations, especially for high
r. This result is consistent with the increased tendency of experimental rods to align
horizontally (figure 3) which has been attributed to the differences between experimental
and simulated rod shapes. Q(r) should decay to zero for long distances if the angular
correlations are short range. In this case, the nonvanishing asymptotic value observed is a

doi:10.1088/1742-5468/2010/06/P06025 8
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Figure 5. Radial orientation distribution functions, Q(r), as defined in
equation (6), obtained experimentally ( ) and in numerical simulations
(continuous line) for rod deposits with different aspect ratios, d. (a) d = 2.4
and (b) d = 5.4.

Table 1. Average values of the packing fraction (φ) and the mean coordination
number (Z) for different aspect ratios. The experimental values of Z are not
displayed as their measurement is not possible.

d = 1 (num) d = 2.4 (num) d = 2.4 (exp) d = 5.4 (num) d = 5.4 (exp) d = 7 (num)

φ 0.882 0.855 0.979 0.807 0.896 0.786
Z 3.32 3.40 — 3.50 — 3.45

consequence of the preferred rod orientation along the whole area of the packing which is
a tendency particularly marked in the experiments. The combined analysis of the radial
distribution function, g(r), and the angular correlation, Q(r), has clarified the structure
of these packings, the marked tendency of rods to align parallel to the substrate and the
development of long-ranged angular correlations.

Table 1 shows how the packing fraction changes with particle elongation. We observe
a monotonous decrease as the particle becomes more anisotropic. However, we cannot
exclude an initial increase for slightly deformed squares; it is known that in ellipsoids [12]
the packing fraction exhibits a maximum for aspect ratios of around 3/2. For all aspect
ratios the deposits are highly compacted; so we have also analyzed the cluster (or domain)
size distributions of aligned particles. Two rods are regarded as part of the same cluster
if there is any contact between them and any of their flat faces have the same orientation,
independently of whether the alignment is SS, LL or LS [17]. Experimentally, two rods
belong to the same cluster if the distance between any point of their surfaces is smaller than
0.1 mm and the relative orientation between any of their faces is smaller than 0.05 rad. In
practice, particle orientation is defined by a vector parallel to the largest side of the rod and
both relatively perpendicular, and parallel orientations are admitted. In the simulations,
we use the same angular criterion and consider that two particles are in contact when the
modulus of the interparticle force is larger than 10−6 times the average contact force.

In figure 6(a) both experimental and numerical results for the cluster size distributions
D(s) are shown on a log–log scale. The graph indicates a remarkable agreement between
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Figure 6. Cluster size distribution, D(s), of particle deposits with different aspect
ratios. (a) D(s) on a log–log scale to display the algebraic decay at small and
intermediate cluster sizes; (b) linear-log scale of D(s) as a function of

√
s.

experimental and simulation results for the two aspect ratios shown, d = 2.4 and 5.4.
We also present numerical results corresponding to a systematic study of the cluster size
distribution for different aspect ratios. For squares, d = 1, the cluster size distribution
follows the power law D(s) ∼ s−3/2 with an exponential cutoff. This result was explained
in [17] in the context of aggregation systems with injection [30] or random multiplicative
processes [31]. Indeed D(s) ∼ s−3/2 can be understood as the orientational version of the
critical q-model proposed for describing force propagation in a granular packing [32, 33].
Very recently, a similar result was obtained for a two-dimensional ensemble of birefringent
discs, where the force network was described by a simple graph [33]. Figure 6(a) displays a
faster decay of the big cluster size distribution. This behavior is evidence of the structural
differences between big and small clusters, rather than a finite size effect, as shown in [17].
Consistent with this picture, long force chains isolate compact clusters which contain, on
average, a larger number of particles than the force chains themselves. Therefore, the
power law decay of the cluster size distribution can be attributed to force chains and the
asymptotic faster decay to compact clusters.

The semi-log graph of figure 6(b) displays the distribution of clusters of aligned
particles in terms of

√
s. As the grains elongate, the asymptotic decay of the cluster

distribution gradually deviates from the algebraic decay. This is a consequence of the fact
that the orientation of the particles, forming a π/4 angle, becomes less favored. Hence,
for very elongated particles the algebraic decay disappears and the exponential decay in
terms of

√
s becomes dominant. This asymptotic, exponential decay can be understood in

the framework of percolation theory. Due to the high compaction fraction of the particle
deposits (see table 1), the compact structure formed by aligned particles is far above the
percolation threshold in a 2D square lattice (pc = 0.5). For such compact clusters it is
known [34] that, above the percolation threshold, the first correction to the critical cluster
size distribution obeys D(s) ∼ e−

√
s.
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Figure 7. Coordination number distribution, obtained for deposits of particles
with different aspect ratios.

Cluster analysis has shown the impact of the particle aspect ratio on the internal
packing structure. To clarify how forces propagate in these deposits, we will consider in
more detail the micromechanical properties of rod packings in the following section.

5. Micromechanics

Force transmission in granular media occurs only through particle contacts. Therefore, the
distribution of the number of contacts, k, has an important influence on force propagation
within deposits. Figure 7 displays the contact number distributions, P (k), obtained
numerically for particle deposits with different aspect ratios. Clearly, squares are the
only particles that show a maximum probability at k = 3. Their narrow distribution
(see inset of figure 7) also denotes the presence of well defined force chains, in agreement
with the cluster structure discussed in the previous section. For elongated particles the
peak is shifted to k = 4 and the probability decays less abruptly than for squares (see
inset of figure 7). This means that the longer the rod, the higher the mean number of
contacts per particle (Z), as shown in table 1. Moreover, it indicates a trend towards
the formation of bulk type clusters, suggesting a vertical force transmission. This result
is in good agreement with previous experiments and simulations in the 3D packing of
rods [11, 18]. Additionally, the existence of arcs, which is indicated by the presence of
particles with two contacts, also decreases with an increasing particle aspect ratio.

The contact network of granular materials can be conveniently characterized in terms
of the contact fabric tensor, Fαβ . This magnitude measures the average contact number

doi:10.1088/1742-5468/2010/06/P06025 11
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density for a given direction in the assembly. It may be used, therefore, to examine
whether the packing is isotropic or there is directional ordering [35, 36]. Thus, the contact
fabric tensor, F i

αβ , of a single particle i is defined as

F i
αβ =

Ci∑

c=1

lci,αlci,β (7)

where the dyadic product of the normalized branch vectors associated with particle i at

contact c, �lci , is summed over all particle contacts, Ci. The mean fabric tensor, F̄αβ , can
then be expressed as

F̄αβ =

〈
N∑

i=1

wvF
i
αβ

〉
(8)

where wv is its average weight. For simplicity’s sake we choose the simplest weighting,
and use particle-center averaging, where wv = 1 if the center of the particle lies
inside the averaging area and wv = 0 otherwise [35, 36]. For systems composed of
monodisperse particles, the tensor F̄αβ is normalized so that its trace, Tr(F̄ ) = Z, reduces
to the mean coordination number Z. As a result, the deviator of the fabric tensor,
i.e. F̄ d

αβ = F̄αβ − Tr(F )I, is a measure of the anisotropy of the contact network [35, 36].
In figure 8, the polar contact distributions for squares (d = 1) and elongated particles

(d = 5.4) are shown for comparison. We also show the principal directions of the mean
fabric tensor, F̄αβ , which validates the consistency of the numerical data. The tendency of
elongated particles to align horizontally is manifested by a large anisotropy in the effective
number of contacts. Elongated particles, lying horizontally, generate contacts more easily
with particles above and below at angles close to θ = 0 and π. Squares, in contrast, align
their diagonals parallel with and perpendicular to gravity, and the contact probability is
bidirectional. The distribution of branch vectors, therefore, provides an alternative and,
consistent, procedure for analyzing the structure of particle packings.

We can correlate this microstructure with stress transmission by studying the
micromechanical properties of the granular pile. To this end, we introduce the stress
tensor of a single particle,

σi
αβ =

Ci∑

c=1

lci,αF c
i,β, (9)

which is defined in terms of the total contact force �F c
i that particle i experiences at contact

c, as derived in section 3. In equation (9), �lci is the branch vector related to the contact c,
and the sum runs over all the contacts Ci of particle i. Making use of the particle-center
averaging introduced in equation (8) the mean stress reads

σ̄αβ =

N∑

i=1

wvσ
i
αβ (10)

where the sum runs over the whole system.
In figure 9, the distribution of the principal stress directions for all the single

particles in the sample is shown for d = 1 and 5.4 in polar coordinates. In each plot,
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Figure 8. Polar distribution of the branch vectors for (a) squares and (b)
elongated particles with aspect ratio d = 5.4. The continuous (discontinuous)
arrow represents the largest (smallest) eigenvalue of the mean fabric tensor.

Figure 9. Polar distribution of the principal directions of the local stress for
deposits of (a) squares and (b) elongated particles with aspect ratio d = 5.4. The
continuous (discontinuous) arrow represents the largest (smallest) eigenvalue of
the mean stress tensor.

the continuous arrow corresponds to the largest eigenvalue of the mean stress tensor,
while the discontinuous line denotes the smallest. For squares, force distributions, as
shown in figure 9(a), display a clear symmetry and are evidence that forces are mainly
transmitted along the π/4 and 3π/4 directions. As we note below, this has a marked
impact on the stress distribution within the sample. For elongated particles, however,
figure 9(b) indicates that forces are preferentially transmitted parallel to gravity. Thus,
stress transmission in deposits of elongated particles displays a high degree of alignment
with the external gravity field. Note that for these rods the eigenvalues of the stress
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Figure 10. Profiles of the trace (a) and deviator (b) of the mean stress tensor.
Results for several aspect ratios are shown. In all cases the stress is rescaled by
the normal stiffness, kn, and the height h is expressed in units of the particle
shortest side.

tensor are perpendicular to those of the fabric tensor displayed in figure 8. Therefore,
the structural analysis of local contacts provides a stronger indication of the mechanical
properties of a deposit. Recent results for irregular particles [37] have shown that the
orientation of elongated particles is strongly associated with the stability of the packing,
and that forces are mainly transmitted through contacts parallel to the shortest particle
dimension. Stress transmission is consistent with this picture, but it also indicates that for
more isotropic particles stress transmission changes its nature. The peculiar orientation
of squares leads to a bidirectional contact ordering, and stress transmission forming an
angle of 45◦ with gravity. Hence, we see how the changes in microstructure induced by
particle geometry determine stress transmission and localization in particle deposits.

The previous results correspond to global averages, but we have also analyzed spatial
stress distribution within the packing. Specifically, figures 10 and 11 display the trace,
deviator and eigenvalues (σ̄11 and σ̄22) of the mean stress tensor, σ̄αβ , as a function of
the deposit depth h, for particle deposits with different aspect ratios. In all the cases
analyzed, the two eigenvectors are very closely parallel to the Cartesian axis; the largest
eigenvalue corresponds to a direction which closely follows the direction of gravity. In
order to obtain the mean stress as a function of the distance from the packing surface,
we use equation (10), and restrict the sum to all particles whose centers lie in a layer of
sector (h − Δh < h < h + Δh), where Δh is five times the length of the shorter side of
the particle.

The nature of the stress transmission reflects on the two eigenvalues (σ̄11 and σ̄22) as
well as the trace and the deviator. Figure 10(a) reveals that, for rods which are not very
elongated, the trace of the stress tensor saturates with increasing depth. This result is in
good agreement with the scenario proposed for squares depositions, which is compatible
with a heterogeneous force transmission characterized by the development of well defined
force chains and an exponential distribution of the interparticle normal forces [17]. Then,
as the force is mainly transmitted in the π/4 and 3π/4 directions, there are force chains
directed towards the walls which screen the apparent weight at the bottom of the granular
column and lead to total pressure saturation in the silo. Further evidence of this behavior
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Figure 11. Profiles of the eigenvalues of the mean stress tensor, (a) σ11 and
(b) σ22. Results for several aspect ratios are shown. In all cases the stress is
rescaled by the normal stiffness, kn, and the height h is expressed in units of the
particle shortest side.

is the fact that for squares, the two eigenvalues of the mean stress tensor are roughly
similar to each other (see figure 11(a) and (b)).

For elongated particles, stress transmission is dominated by the contribution parallel
to gravity (σ̄22) whose values are much higher than the stress in the horizontal direction
(σ̄11). This asymmetry in the stress transmission is quantified through the depth-
dependent deviator of the mean stress, as displayed in figure 10(b). Moreover, for
elongated rods, the behavior of the trace (figure 10(a)) and the stress eigenvalues
(figure 11(a) and (b)) clearly suggest that the saturation of the stress with the deposit
depth is strongly inhibited. In particular, it is remarkable that σ̄22 grows linearly with
increasing depth without displaying pressure saturation. This result is a consequence
of the horizontal alignment of the flat faces of the rods, which causes anisotropic force
transmission from top to bottom. Although we cannot discard eventual saturation for
sufficiently deep deposits, the outcomes clearly indicate that the strong tendency of the
particles to align horizontally favors stress transmission parallel to gravity, which destroys
stress localization along force chains.

6. Conclusions

In this work we present experimental and numerical results of the topological and
mechanical properties displayed by bidimensional deposits of faceted particles with
different aspect ratios. In all cases the topology is dominated by the formation of ordered
structures of aligned rods. We believe that the origin of this high ordering lies in the fact
that the particles are poured in a quasi-sequential procedure. Hence, during deposition
the particles are allowed to explore different configurations and relax to the one that
minimizes the energy. Elongated particles tend to align horizontally. Then the stress is
mainly transmitted from top to bottom, which is revealed by the asymmetric distribution
of the local stress. Consequently the trace of the stress tensor does not present saturation
with the depth, and the deviator of the mean stress tensor increases continuously with
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the height of the column. When the particles become more symmetric, their orientation
deviates from the horizontal and, for the limiting case of squares, becomes oriented with
a diagonal parallel to gravity. This causes a symmetrical transmission of the local stress
at angles π/4 and 3π/4 with respect to the direction of gravity. As a result, the trace of
the mean stress tensor saturates for a given depth in the layer, as is expected for granular
materials composed of spherical particles. We can also conclude that stress localization
is highly correlated to pressure saturation and the appearance of Jansen’s effect. The
strong dominance of the vertical component of the stress for elongated rods indicates that
if saturation develops for deeper deposits, such a saturation will be qualitatively different
from the one observed for isotropic grains. It is worth noting that we have focused on
intrinsic stress saturation because the results discussed correspond to silos where the
lateral walls are smooth. Wall-induced irregularities provide an additional mechanism for
stress saturation; the interplay between particle anisotropy and wall roughness will be
addressed elsewhere.
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