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We discuss some issues related with the process of controlling space-time chaotic
states in the one dimensional Complex Ginzburg-Landau equation (CGLE). We
address the problem of gathering control over turbulent regimes with the only use
of a limited number of controllers, each one of them implementing in parallel a local
control technique for restoring an unstable plane wave solution. We show that the
system extension does not influence the density of controllers needed in order to
achieve control.

Keywords: Chaos control, Complex Ginzburg-Landau equation.

1. Introduction

At first glance, controlling chaos may sound like an antinomy: one can find it difficult
to understand how the concept of control could be applied to the concept of chaos.
In fact, a huge literature of the nineties in the physics community has proved that
these two terms can be reconciled, by showing that tiny perturbations applied to
a chaotic system are sufficient to control its dynamics, driving it toward a desired
target behavior.

The problem can be stated as follows: given a system (or a model equation repre-
senting to a good accuracy the dynamics of a specific process), how can one impose
that such system performs a pre-determined operation? When the dynamical sys-
tem is inherently chaotic, two options are possible. One can select parameters so
as to drive back the system to a region where the dynamics is restored to a regular
dynamics, and this process is usually referred to as suppression of chaos. Alterna-
tively, one can take advantage of the great richness in the structure of the chaotic
attractor, where infinite unstable periodic solutions are embedded. In this second
case, usually referred to as control of chaos (Boccaletti et al., 2000), one can prop-
erly select very tiny (in some case vanishingly small) perturbations able to force
the appearance of a specific periodic behavior or a desired portion of the chaotic
trajectory. Historically, the control of chaos grew as a more and more popular disci-
pline as soon as scientists became aware of the omnipresence of chaos in dynamical
systems.

The number of articles devoted to control of chaos experienced a huge grow in the
scientific literature at the beginning of the nineties. After the seminal work by Ott-
Grebogi-Yorke (OGY) (1990), there has been an everlasting interest in the control
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of chaos, and many alternative approaches have been suggested, as the time-delayed
control method (Pyragas, 1992), and the adaptive method (Boccaletti & Arecchi,
1995). Furthermore, chaos control was theoretically proved in a large variety of time
discrete, as well as time continuous systems (Boccaletti et al., 2000) and even in
the case of delayed dynamical systems (Boccaletti et al., 1997).

The large body of literature devoted to this subject is rooted in the crucial role
that chaos control can play in many practical applications, such as communica-
tions with chaos (Hayes et al. 1994), secure communication processes (Cuomo &
Oppenheim 1993, Gershenfeld & Grinstein 1995, Kocarev & Parlitz 1995, Peng et
al. 1996, Boccaletti et al. 1997b). Furthermore, experimental control of chaos has
been achieved in many different areas such as chemistry (Petrov et al., 1993), laser
physics (Roy et al. 1992, Meucci et al. 1994, Meucci et al. 1996), electronic circuits
(Hunt, 1991), and mechanical systems (Ditto et al., 1990).

More recently, the interest switched to the application of control schemes in spa-
tially extended systems. After some preliminary attempts (Aranson et al., 1994) to
control spatio-temporal chaos, attention has turned to the control of two-dimensional
patterns (Lu et al. 1996, Martin et al. 1996), or of coupled map lattices (Par-
mananda et al. 1997, Grigoriev et al. 1997), or of particular model equations, such
as the Complex Ginzburg-Landau equation (CGLE) (Montagne & Colet, 1997) and
the Swift-Hohenberg equation for lasers (Bleich et al. 1992, Hochheiser et al. 1992).

While for time chaotic systems the different proposed schemes for chaos control
have found several experimental verifications, in the extended case experimental re-
alizations are so far limited in the field of nonlinear optics (Juul-Jensen et al. 1998,
Benkler et al. 2000, Pastur et al. 2004) and also in the control of Kármán vortex
street in two dimensional simulations of fluid turbulence (Patnaik & Wei, 2002).
The main reason for this substantial lack of experimental verifications is that not
all the proposed schemes for control of spatiotemporal chaos are straightforwardly
implementable. For instance, many methods use space-extended perturbations, i.e.
perturbations that have to be applied at any point of the system, and this re-
quirement represents a serious limitation for any experimental implementations. In
coupled map lattices, few examples of global control (Parmananda et al., 1997),
or control with a finite number of local perturbations (Grigoriev et al., 1997) have
been reported.

The most relevant question that arises when considering spatially extended sys-
tems is therefore to assess whether the perturbation itself should be extended in
space, i.e. it must be applied to all points of the considered system. In this paper,
we review some results about conditions for controlling chaos in spatially extended
systems (Boccaletti et al., 1999), with reference to the Complex Ginzburg-Landau
Equation (CGLE). In the first two sections, after recalling the basic properties of
CGLE, we will show that it is not necessary to apply control to all points of the
systems, but we can rely on a finite number of local controllers. We will answer some
questions about the cost of controlling a space extended system, and the time one
has to wait in order to restore a regular dynamics from a chaotic one. Furthermore
we will address issues such as which is the minimal number of local controllers that
still provides control over the dynamics, and how strong the applied forcing must
be in order to drive the system to a regular behavior. In the third section, we will
show the results of using a parallel extension of the Pyragas’ technique (Pyragas,
1992). The conclusive section overviews some still open problems.
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2. The dynamical model

In the rest of this paper, we will test control schemes over the one-dimensional
Complex Ginzburg-Landau equation (CGLE). This equation has been extensively
investigated in the context of space-time chaos, since it describes the universal
dynamical features of an extended system close to a Hopf bifurcation (Cross &
Hohenberg 1993, Aranson & Kramer 2002), and therefore it can be considered as a
good model equation in many different physical situations, such as in laser physics
(Coullet et al., 1989), fluid dynamics (Kolodner et al., 1995), chemical turbulence
(Kuramoto & Koga, 1981), bluff body wakes (Leweke & Provansal, 1994), or arrays
of Josephson’s junctions (Josephson, 1962).

In CGLE, a complex field A(x, t) = ρ(x, t)eiφ(x,t) of modulus ρ(x, t) and phase
φ(x, t) obeys

Ȧ = A + (1 + iα)∂2
xA − (1 + iβ) | A |2 A. (2.1)

Here, dot denotes temporal derivative, ∂2
x stays for the second derivative with

respect to the space variable 0 ≤ x ≤ L (L being the system extension), α and
β are real coefficients characterizing linear and nonlinear dispersion. This model
equation arises in physics as an ”amplitude” equation, providing a reduced universal
description of weakly nonlinear spatio-temporal phenomena in extended continuous
media in the proximity of an Hopf bifurcation (Aranson & Kramer, 2002).

Different dynamical regimes occur in Eqs. (2.1) for different choices of the pa-
rameters α, β (Shraiman et al. 1992, Chate 1994).

AT
PT

B−F−N

α

−0.6−1.5 −1.2 −0.9 −0.3 0.0
0.7

1.4

2.1

3.5

2.8

No chaos

β

Bi−chaos

Figure 1. (α,β) parameter space for Eqs. (2.1). The lines delimit the borders for each one
of the dynamical regimes produced by Eqs. (2.1), and the Benjamin-Feir-Newel (B-F-N)
line for stability of the plane wave solutions. Amplitude Turbulence (AT) and Phase
Turbulence (PT) are the main dynamical regimes of the CGLE (see text for their detailed
description).

In particular, Eqs. (2.1) admits plane wave solutions (PWS) of the form

Aq(x, t) =
√

1 − q2ei(qx+ωt) − 1 ≤ q ≤ 1. (2.2)
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Here, q is the wavenumber in Fourier space, and the temporal frequency is given
by

ω = −β − (α − β)q2. (2.3)

The stability of such PWS can be analytically studied below the Benjamin-Feir-
Newel (BFN) line (defined by αβ = −1 in the parameter space). Namely, for αβ >
−1, one can define a critical wavenumber

qc =

√

1 + αβ

2(1 + β2) + 1 + αβ
(2.4)

such that all PWS are linearly stable in the range −qc ≤ q ≤ qc. Outside this range,
PWS become unstable through the Eckhaus instability (Janiaud et al., 1992).

When crossing from below the BFN line in the parameter space, Eq. (2.4) shows
that qc vanishes and all PWS become unstable. Above this line, one can identify
different turbulent regimes (Shraiman et al. 1992, Chate 1994), called respectively
Amplitude Turbulence (AT) or Defect Turbulence, Phase Turbulence (PT), Bi-
chaos, and a Spatiotemporal Intermittent regime. The borders in parameter space
for each one of these dynamical regimes are schematically drawn in Fig. 1, together
with the BFN line. Along this review, we will concentrate on PT and AT, since they
constitute the fundamental dynamical states of the fields, and their main properties
have received considerable attention in recent years including the definition of suit-
able order parameters marking the transition between them (Torcini 1996, Torcini
et al. 1997, Brusch et al. 2001).

Phase turbulence (PT) is a regime where the chaotic behavior of the field is dom-
inated by the dynamics of φ(x, t). In PT the modulus ρ(x, t) changes only smoothly,
and is always bounded away from zero. At variance, AT is the dynamical regime
wherein the fluctuations of ρ(x, t) become dominant over the phase dynamics. The
complex field experiences therefore large amplitude oscillations which can (locally
and occasionally) cause ρ(x, t) to vanish. As a consequence, at all those points
(hereinafter called space-time defects or phase singularities) the global phase of the

field Φ ≡ arctan
[

Im(A)
Re(A)

]

shows a singularity.

All simulations presented here were performed with a Crank-Nicholson, Adams-
Bashforth scheme which is second order in space and time (Press et al., 1992),
with a time step δt = 10−2 and a grid size δx = 0.25. Three system size (L =
100, 103, 5 103) have been considered, and in all cases periodic boundary conditions
[A(0, t) = A(L, t)] have been imposed.

(a) Dynamics Characterization

A first interesting parameter characterizing the CGLE dynamics is the defect
density. By adding up all defects appearing during a numerical simulation, one can
define

nD =
Ndef

LT
, (2.5)

where L is the system size and T is the integration time during which the number
of phase defects Ndef is counted. Numerically, phase defects at time t have been
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counted as those points xi where the modulus ρ(xi, t) is smaller than 2.5∗10−2 and
that are furthermore local minima for the function ρ(x, t).

Figure 2 shows nD vs. the parameter β at α = 2 for different system sizes. The
quantity nD is clearly an intensive parameter (from a thermodynamic sense), and is
a good indicator for differentiating between AT and PT regime. It is interesting to
note, however, that the transition between AT and PT is not sharp and depends of
the system size. The complete characterization of this transition is still a question
of debate.

−1.05 −0.85
0

0.0005

−1.4 −1.2 −1 −0.8 −0.6

β

0

0.001

0.002

0.003

0.004

0.005

nd

Figure 2. Defect density as a function of β for different system sizes. Open circles,
squares and diamonds are for L = 100, 1000, 5000, respectively.

A second important parameter is the natural average frequency. Such a fre-
quency is calculated from long numerical simulations of CGLE by averaging in
space the unfolded phase φ defined in R rather than in [0, 2π]. We have:

Ω = lim
t→∞

< φ(x, t) >x

t
(2.6)

where < ... >x stands for spatial average.
Figure 3 reports Ω vs. the parameter β at α = 2. In order to construct Fig.

3, we have integrated the CGLE for a very long simulation time (usually ts =
15, 000) after eliminating the transient behavior occurring in the first tt = 5, 000.
We also have tested the sensibility of the results by choosing different initial random
conditions.

It should be emphasized that all initial conditions were chosen to have a zero
average phase gradient, because the frequency in the PT regime is highly sensitive
to the average phase gradient (Brusch et al., 2001).

A third indicator is the linear spatial auto-correlation function

C(ξ) =< Ā(x, t)A(x + ξ, t)) >t (2.7)

Article submitted to Royal Society



6 S. Boccaletti and J. Bragard
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Figure 3. Natural averaged frequency Ω (see text for definition) vs. β for α = 2. The
same symbol convention is used for the system size L as in Fig. 2.

where < ... >t stands here for a time average. It has been theoretically predicted
(Coullet et al., 1989) that the defects have a dynamical role in mediating the shrink-
ing process of ξ. Figure 4 strikingly illustrates this fact for the CGLE. The AT
regime (solid line) is for parameters α = 2 and β = −1.05 and the parameters for
the PT regime (dashed line) are α = 2 and β = −0.87. The decays to zero are not
exponential but we can still define the correlation length as the value of ξ for which
C(ξ) = 1/e, in doing so we get approximately ξ = 10.7 and ξ = 389 for the AT and
PT regimes, respectively.

0 250 500 750 1000

ξ
−0.5

0

0.5

1

C(ξ)

Figure 4. Linear spatial auto-correlation lengths for the AT (solid line) and PT (dashed
line) regime of the CGLE (see text for parameters values). The system size L is 5,000.
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From our discussion we have learned that the CGLE dynamics can be charac-
terized by some intensive indicators as the density of defects, the natural frequency
or the correlation length. With increasing the system extension (L), the values of
these three parameters is constant, for system sizes large enough to prevent the
dynamics from being affected by any ”finite size” effects.

3. Control of the CGLE

After having characterized the dynamics of the CGLE, we will attack the problem
of its control. In particular, we will address the issue of whether control can be
achieved for a certain number of controllers (extensive case) or rather for a certain
density of controllers (intensive case). In this section, we will point out that it is
the density rather than the number of controllers that determines control over the
spatio-temporal dynamics. For this purpose, we will test a control strategy for two
system sizes (L = 100 and L = 5, 000) that differ by a factor fifty.

Let us begin with the problem of controlling space time chaos in the AT regime.
For this purpose, we set α = 2 and β = −1.05. In a previous analysis (Boccaletti
et al., 1999) we have used a system size of L = 64 which is nearly two order of
magnitude smaller than the larger one reported here, and have demonstrated that
the control of space-time chaos is doable. Control of space time chaos here would
imply stabilization of a given unstable periodic pattern out of the AT regime. We
therefore select a goal pattern g(x, t), represented by any of the plane wave solutions
in Eq.(2.2), which are all unstable in the AT regime.

In order to drive the dynamics to the desired goal pattern we add to the right-
hand-side of Eq.(2.1) a perturbative term U(x, t) of the type

U(x, t) = 0 for x 6= xi

U(x, t) = Ui(t) for x = xi
(3.1)

where i = 1, ..., M and xi = 1+(i−1)ν are the positions of M local equally spaced
controllers, mutually separated by a distance ν (xi+1 − xi = ν). The controller
distance ν will indeed be a crucial parameter in our studies. It indicates in some
sense how dense the controllers must be in order to attain the goal dynamics, and
we will show that i) such density should be relatively large for the control to be
effective and ii) such density is indeed independent of the system size L. In our
previous analyses (Boccaletti et al., 1999), the perturbations were selected by using
the adaptive algorithm (Boccaletti & Arecchi, 1995). In such a case, however, a full
control of the perturbation strength applied to the system is not always guaranteed,
and, in some cases, the perturbation can occasionally reach unacceptably large
values. This represents a limitation of our previous approach, especially if one wants
to apply this scheme on a real experiments. We here will turn to the simpler Pyragas
control scheme where the strength of the perturbation K0 is fixed externally by the
operator. The perturbation takes the form

Ui(t) = K0(g(xi, t) − A(xi, t)). (3.2)

Figure 5 reports the control task of one of the unstable plane wave for K0 = 1
and ν = 0.25 and a system size (L = 5, 000). The control procedure is effective
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Figure 5. Space (vertical)- time (horizontal) plot of the real part of A in the AT regime
(β = −1.05). Time is increasing from 0 to 300 and the control is switched on at t = 100.
The parameters for the control are K0 = 1 and ν = 0.25. The goal dynamics is chosen
such that the system size L = 5, 000 contains 10 wavelengths of the desired PWS. The
associated frequency ω = 1.0495 is calculated from the dispersion relation Eq.(2.3). The
system size L is 5,000.

in the AT regime, and is associated with the suppression of all defects. The arrow
indicates the time when the control is switched on.

The control process described above also works for the PT regime, as shown in
Fig. 6. In the following, we move to compare quantitatively the difference between
the two control processes in the AT and PT regimes and for two different system
sizes. Our evidence will indicate that the PT regime is only slightly more easily
controllable, for the parameters selected in the present study.

In order to make such quantitative comparison, we monitor the time evolution
of the difference between the goal solution and the field A

E(t) =
1

L

∫

|A(x, t) − g(x, t)| dx (3.3)

where the factor 1/L accounts for averaging over space. Figure 7 reports the time
evolution of E(t) for the AT (solid line) and PT (dashed line) regimes. It is apparent
from the figure that the difference between controlling a PT or AT regime is not
significant when selecting K0 = 0.5 and ν = 0.25.

In order to gather more information on the control process, we define the tran-
sient time τ needed for control as the time at which the error E(t) becomes smaller
than a given threshold (in what follows we set the threshold to be 10−2).

This allows us to study the influence on control of the two main parameters
used in our scheme, namely the fixed strength of the control K0 and the distance
between two adjacent controllers ν, for the two chosen system sizes L = 100 and
L = 5, 000.
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Figure 6. Space (vertical)- time (horizontal) plot of the real part of A in the PT regime
(β = −0.87). Time is increasing from 0 to 300 and the control is switched on at t = 100.
The parameters for the control are K0 = 1 and ν = 0.25. The goal dynamics is chosen
such that the system size L = 5, 000 contains 10 wavelengths of the desired PWS. The
associated frequency ω = 0.8695 is calculated from the dispersion relation Eq.(2.3). The
system size L is 5,000.

0 5 10 15 20

t
10−3

10−2

10−1

100

101

E

Figure 7. Time evolution of the control error (see text for definition) for the AT (solid
line) and PT (dashed line) regimes. The control parameters are K0 = 0.5 and ν = 0.25.
The system size L is 5,000.

As one would expect, the transient time τ is an increasing function of ν, at a
fixed value of K0. Furthermore, we observe that there is a threshold for controller
density below which the control method fails in stabilizing the PWS for any value
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of the coupling strength K0. An example of this behavior is reported in Fig. 8,
which shows how τ increases with ν for K0 = 1, for both AT and PT regimes.
Figure 8 confirms that the density of controllers is indeed the important quantity
that enables control. The two system sizes L = 100 and L = 5, 000 are represented
by open and filled symbols, respectively.

0 1 2 3 4
ν

0

100

200

300

τ

Figure 8. Dependency of the control time τ with the separation of the controllers ν for
two different system sizes (L = 100 is represented with open symbols and L = 5, 000 is
represented with filled symbols). Squares and Circles are for the control of the PT and
AT regimes, respectively. The control parameter K0 = 1 is fixed.

Intuitively, one would also expect τ to be a decreasing function of K0 at fixed
ν, reflecting the fact that an initial choice of a larger control strength helps the
system to attain more rapidly the desired goal behavior. Figure 9 confirms this fact
by reporting the dependency of the control time τ with the control strength K0

at fixed density of controllers ν = 0.25 and for the two system sizes (L = 100 and
L = 5, 000).

4. Conclusions and Perspectives

In this article, we have reconsidered the problem of controlling a spatio-temporal
state generated by a CGLE into an unstable plane wave solution. In the present
study, we have considered two different system sizes (L = 100 and L = 5, 000)
nearly two order of magnitude apart from each other. Control of spatio-temporal
chaos is achieved for sufficient large control strength and density of controllers. It is
also interesting to note that the result of Bragard & Boccaletti (2000) concerning
the integral behavior of the synchronization is also valid for the case of control. Let
us recall that it states that if the distance between the controllers is doubled the
strength must be also doubled in order to achieved control in the same time.

Article submitted to Royal Society



Controlling spatiotemporal chaos 11
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Figure 9. Dependency of the control time τ with the control strength K0. Symbols have
the same meaning as for Fig. 8 The separation between the controllers is fixed to ν = 0.25.
Note the logarithmic scales for both axes.

The questions that we leave for further studies are the following: will a further
increase in the size of the system eventually compromising the ability of control? In
the thermodynamic limit (L → ∞), for instance, one would really need an infinite
number of controllers. Apart of being very difficult to realize in practice, one may
ask if control is still ”stable” in this thermodynamic limit. Another relevant question
is whether the selection of equally spaced controllers represents an optimal choice
for achieving stabilization of PWS. An answer to this question would result from
comparatively testing the effectiveness of different controller positioning functions,
or from giving analytical conditions for optimal controller placing. In this context,
a promising approach has been proposed that connects control of spatio-temporal
chaos with the Floquet control theory (Baba et al., 2002).

Work partly supported by MIUR-FIRB project n. RBNE01CW3M-001. J.B. acknowledges
support from MCYT project (Spain) n. BFM2002-02011 (INEFLUID).
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