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Abstract. A numerical study of the magnetic induction equation has been performed on von Kármán type
flows. These flows are generated by two co-axial counter-rotating propellers in cylindrical containers. Such
devices are currently used in the von Kármán sodium (VKS) experiment designed to study dynamo action
in an unconstrained flow. The mean velocity fields have been measured for different configurations and are
introduced in a periodic cylindrical kinematic dynamo code. Depending on the driving configuration, on
the poloidal to toroidal flow ratio and on the conductivity of boundaries, some flows are observed to sustain
growing magnetic fields for magnetic Reynolds numbers accessible to a sodium experiment. The response
of the flow to an external magnetic field has also been studied: The results are in excellent agreement with
experimental results in the single propeller case but can differ in the two propellers case.

PACS. 47.65.+a Magnetohydrodynamics and electrohydrodynamics – 91.25.Cw Origins and models
of the magnetic field; dynamo theories

1 Introduction

Dynamo action [1,2], which converts kinetic energy into
magnetic energy in astronomical objects, is the manifes-
tation of the coupling between kinetic and magnetic exci-
tations in a conducting fluid and, as such, could be con-
sidered as ordinary a physical phenomenon as is thermal
convection. This is in fact not the case, when one considers
the modest knowledge acquired from all the approaches
carried out up to now from theory, numerical computa-
tion or experiments. Since the recent results obtained by
the Riga [3,4] and Karlsruhe [5,6] experiments, the oc-
curence of dynamo action is no longer questionable, but
the nonlinear regimes are very poorly known: most basic
problems set for example by geomagnetism or heliomag-
netism remain without satisfying answers.

As for hydrodynamic turbulence, the experimental ap-
proach could represent an efficient tool to study the non-
linear effects in MHD flows. We will here concentrate on an
analysis of a particular type of flow – namely von Kármán
flow – without trying to give a complete account of this
field of activity. These flows are used in the von Kármán
sodium (VKS) experiment [7,8] that is devoted to study
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the approach towards a self-generating dynamo in an un-
constrained flow. No self-excitation has been reported yet
and the ability of these flows to generate a magnetic field
remains an open question. Some numerical examples [9]
have shown that dynamo action is present in flows for
magnetic Reynolds numbers Rm = µ0σUL ≥ Rc

m � 100
where U and L are respectively the maximal speed of the
flow and the typical size of the conducting volume, µ0 is
the magnetic permeability and σ the electrical conductiv-
ity. Using the best available fluid conductor, liquid sodium
at about 150 ◦C, the condition Rm = 100 implies that
UL = 10 m2/s, which represents the main technical chal-
lenge to be achieved by any experimental fluid dynamo.
In the natural dynamos, such as the Earth, large magnetic
Reynolds numbers are achieved with scales above 1000 km
and small velocities, while in an experimental device, cost
constraints ask for sizes not too far from one meter and
thus a relatively high speed is needed.

Note also that using liquid sodium as a conduct-
ing fluid, the kinetic Reynolds number of the flow is
Re = UL/ν = Rm/Pm, where Pm = µ0σν is the mag-
netic Prandtl number and ν the kinematic viscosity. As
Pm ∼ 10−5 for liquid metals, Re � 105×Rm � 107, which
shows that the flow is in a regime of fully developed tur-
bulence. Moreover, as is well known, the threshold Rc

m for
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dynamo action depends strongly on the characteristics of
the flow. Three different methods may then be used to
select an experimental configuration:
(i) Reproduce flows already known to lead to dynamo ac-
tion, based on previous theoretical or numerical knowl-
edge. Very recently, this approach has been successfully
used in constrained flows in recent experiments in Riga [4],
based on the Ponomarenko model [10], and Karlsruhe [6],
based on the Roberts model [11]. However, imposing the
desired flow topology may require internal walls, which
may have an influence on the non-linear regime also. De-
spite different attempts [7,8,12,13], dynamo action in an
unconstrained turbulent flow has not yet been observed.
(ii) Try various forcing mechanisms and geometries using
directly a conducting flow prototype, and determine the
corresponding critical magnetic Reynolds numbers (e.g.
by measuring the decay times of an external magnetic
field or the response to an external magnetic field). This
approach has been used in sodium by Gans [14], by Odier
et al. [15] in gallium and by Peffley et al. [12,13] in the
sodium Maryland experiment. The main drawback is the
lack of knowledge of the velocity field: if the selected con-
figuration leads to a threshold Rc

m being too high to be
feasible, there is no guide besides trials and errors to make
it smaller.
(iii) Study various forcing mechanisms and geometries in
water models to measure the mean velocity fields which
are then introduced in the numerical computation of a
kinematic dynamo problem. This is the way chosen in par-
ticular by the Madison [16], the Perm [17] and the VKS
experiments [7,8].

In this work, a numerical study of the induction equa-
tion is performed on von Kármán type flows similar to
those used in the VKS experiment. These flows are gen-
erated by counter-rotating disks in a cylindrical geome-
try and have been extensively studied in the past [18–23].
They are supposed to be good candidates to the realiza-
tion of an experimental homogeneous fluid dynamo. In
particular, kinematic dynamo simulations in a sphere [9]
and direct numerical simulations of the Taylor-Green ge-
ometry [24] have shown that similar flows lead to self-
excitation for accessible Rc

m. No dynamo action has been
presently observed in these unconstrained geometries, but
two types of MHD measurements have been performed: in
a sphere filled with sodium, Peffley et al. [12] have used
pulse-decay rates to obtain an estimation of Rc

m; the VKS
experiment [8] has studied the response of the flow to an
external field and exhibited large magnetic induction ef-
fects. However, the dependence of the threshold on the
different parameters of the problems remains unknown.
In this paper, the mean velocity fields are measured in
a water model experiment for various configurations and
introduced in an axially periodic cylindrical kinematic dy-
namo code. The dependence of the threshold on the main
characteristics of the flow and on the boundary conditions
is then studied.

The paper is organized as follows. The setup and the
velocity fields of the model experiment are presented in
Section 2 and the numerical approach in Section 3. The de-
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Fig. 1. Top: experimental setup. The flow is produced in a
cylindrical container of radius Rc by two counter-rotating pro-
pellers driven by two independent motors. The distance be-
tween the propellers is Hd. (r, θ, z) are the usual cylindrical
coordinates. P represents the point where the magnetic field
probe is located inside the VKS apparatus. (X, Y , Z) are
the Cartesian coordinates corresponding to the probe measure-
ment axes. Bottom: schematic drawing of the von Kármán flow
showing the mean toroidal and poloidal flows.

termination of threshold, the description of the self-excited
magnetic field and the response of the system to an ex-
ternal magnetic field are then reported in Section 4. The
results are finally discussed and compared to available re-
sults in Section 5.

2 Water model experiment

2.1 Experimental setup

The experimental setup shown in Figure 1 is a half-scale
model of the sodium VKS experiment [8]. It consists of a
cylindrical container of internal radius L = Rc = 10 cm
and height Hc = 30 cm, filled with water. The system is
driven by two counter-rotating co-axial disks of radius Rd,
with their inner faces a distance Hd = 18 cm apart. Dif-
ferent disks have been used: smooth or rough disks, disks
with straight or curved blades with different heights. In
the following, we report results concerning two different
propellers: Propeller TM28 (resp. TM60) has a 180 mm di-
ameter (resp. 185 mm), 8 blades (resp. 16) of 2 cm height.
The blades of TM60 have a curvature slightly larger than
those of TM28. Both propellers rotate as shown in Fig-
ure 1. The propellers presently used in the VKS exper-
iment are of the TM60 type. Baffles of different width
and length can be introduced on the internal wall of the
cylinder in order to change the ratio of axial to azimuthal
components of the velocity field.
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Two 2 kW motors are used to drive the disks in oppo-
site directions at an adjustable frequency f in the range
0–25 Hz. The measurements reported here have been per-
formed in the range 0–10 Hz. A kinematic Reynolds num-
ber based on the driving is defined as: Re = 2πfR2

c/ν,
where ν is the kinematic viscosity of water.

Global measurements such as torque or power and
pressure measurements have been performed in order to
characterize the turbulence. The results will be reported
in details elsewhere and show results typical of fully tur-
bulent flows. In the following, we focus on the velocity
measurements which are used in the numerical study.

2.2 Velocity fields

2.2.1 Measurement of the velocity field

Velocity fields have been obtained via laser Doppler ve-
locimetry (LDV) using a DANTEC system. The axial and
azimuthal velocities Vz and Vθ have been measured as
functions of r, z and time. At the rotation rates used in
the experiment, the flow is highly turbulent: Re � 6×105

for f = 10 Hz. Figure 2 shows the temporal evolution of
the local velocity at a given point: velocity fluctuations
appear to be of the order of magnitude of the mean veloc-
ity, and have a nearly Gaussian distribution. In fact, the
amplitude of the fluctuations as well as the shape of their
probability density function strongly depend on the posi-
tion inside the flow. The amplitude is particularly high in
the plane between the two recirculation cells, where the
strong toroidal shear maintains a vigorous mixing layer.
More quantitatively, the turbulence intensity defined as
KV = Vrms/Urim, where Vrms is the order of magnitude of
the standard deviation of the velocity throughout the flow
and Urim is the rim velocity of the disks, is roughly 40%.

As a consequence, the velocity can be seen as a mean
flow plus a turbulent part: V = U + u. In the following,
U denotes a time averaged flow, and V a velocity field
that depends on time.

The LDV facility gives only the axial and azimuthal
instantaneous velocity, whereas the induction equation
asks for the three time-averaged components. The miss-
ing mean radial velocity is derived as follows. Note that,
although U is not a solution of the Navier Stokes equa-
tions, it is a solenoidal vector field, and it can always be
decomposed into toroidal and poloidal components:

U(r, θ, z) = ∇× (T ẑ) + ∇×∇× (P ẑ) = U tor + Upol

where ẑ is the unit vector in the axial direction. Assum-
ing now that U is axisymmetric (it is not strictly the case
when four axial baffles are used), its toroidal component
reduces to the azimuthal velocity, while its poloidal com-
ponent is found to lie in the meridian planes

U tor(r, z) = Uθ(r, z) θ̂

Upol(r, z) = ∇× (∂rP θ̂) = θ̂ × (1/r∇ψ(r, z))
Upol(r, z) = Ur(r, z) r̂ + Uz(r, z) ẑ
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Fig. 2. (a) Temporal evolution of the fluctuating part of the
azimuthal velocity of TM60 propeller recorded using Laser
Doppler Velocimetry at r = 60 mm, z = 65 mm for f = 2 Hz.
The value of the mean azimuthal velocity is Uθ = 0.42 ms−1.
(b) Probability density function for the same signal: data (+)
and Gaussian fit (solid line).

where r̂ and θ̂ are the unitary vectors in the radial and az-
imuthal directions. The poloidal scalar P is thus replaced
by the flux function ψ(r, z), such that

Ur(r, z) = 1/r ∂zψ

Uz(r, z) = −1/r ∂rψ

so that finally Ur can be derived from the experimental
knowledge of the field Uz(r, z).

The velocity field input in the kinematic dynamo code
is obtained in the following way: (i) The time averaged
Uθ and Uz are measured on a 11 × 15 grid in the plane
θ = 0 of Figure 1, outside the region swept by the propeller
blades. (ii) In the region swept by the propeller blades, we
interpolate lines z = 0, 16, 17, making the hypothesis
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Fig. 3. Mean velocity field. TM28 propeller velocity field: (a) toroidal and (b) poloidal component in a meridional plane. TM60
propeller velocity field: (c) toroidal and (d) poloidal component.

that Uz depends linearly in z and Uθ does not depend
on z. (iii) From the obtained 11 × 18 Uz velocity field,
we compute the flux function ψ by a radial integration
between the axis and the container wall. (iv) ψ and Uθ

are smoothed using a standard 3 × 3 convolution filter.
(v) ψ and Uθ are then periodized in the z-direction in
order to eliminate Gibbs phenomenon in the code. Axial
periodicity is obtained by completing the measured flow
by its symmetric with respect to the plane of any of the
container tops (as translation of length L is obtained by
the product of two reflections by parallel planes distant
of L/2). (vi) ψ and Uθ are then interpolated linearly to
the final 48(z) × 51(r) simulation resolution. (vii) Ur is
then derived from ψ.

Note that the periodization of the flow implies that
the toroidal flow can be decomposed on n′ odd modes,
while the poloidal flow can be decomposed on n′ even
modes. The magnetic eigenmodes depend on these sym-
metry properties of the simulated flow.

2.2.2 Characterization of the velocity field

Different driving devices have been tested and each con-
figuration gives a different velocity field. Figure 3 shows
the toroidal and poloidal components of the mean velocity
field for the propellers TM28 and TM60 without baffles.
The two velocity fields appear to be similar, but we will
see later that TM28 and TM60 display quite different dy-
namo properties.

Table 1. Characteristics of two experimental velocity fields
corresponding to propeller TM28 and TM60 at f = 4.53 Hz.
The definitions of mean and maximum velocity, poloidal and
toroidal components are given in Section 2.2. The efficiency
corresponds to Ef = Umax/2πRcf .

Upol(ms−1) Utor(ms−1) Upol/Utor Ef

Mean Max Mean Max Mean Max

TM28 0.51 1.26 0.72 1.77 0.71 0.71 0.64

TM60 0.47 1.20 0.58 0.94 0.82 1.27 0.52

In Table 1, the main characteristics of these velocity
fields are summarized. The spatial mean speed in the mea-
sured volume, including blades, is defined as:

Umean =
1
V

∫
V

|U(r, z)|dV

and the efficiency Ef of the propeller as: Ef =
Umax/2πRcf . Umax represents the maximum value of the
speed in the measured volume. Typically, Umax ≤ Urim.

As can be seen in Table 1, the efficiency of propeller
TM28 is 25% larger than that of propeller TM60. Note
that the efficiency of a straight-blade propeller is closer to
unity. As could be expected from the curvature difference,
the poloidal-to-toroidal ratio of propeller TM60 is larger
than that of propeller TM28. This gain in poloidal-to-
toroidal ratio is however offset by the loss in efficiency,
so that the poloidal flow of TM60 is smaller than that of
TM28.
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The largest values of the velocity can be found close to
the propeller rims. This is true for both the poloidal and
the toroidal velocities, regardless of the propeller used.

For a typical pair of propellers, we have performed ve-
locity field measurements at different rotation rates, 2.5,
5 and 7.5 Hz. At every location inside the flow, the mea-
sured velocity is proportional to the rotation rate. This
result could be expected from standard hydrodynamics
arguments. As a further consequence, changing the mag-
netic Reynolds number by a simple scaling of the flow
seems reasonable. This property will be used in the nu-
merical code.

3 Numerical resolution of the induction
equation

3.1 Scope of the numerical approach

The numerical dynamo problem asks for the resolution of
two coupled sets of equations, one for the velocity field
and one for the induction equation. In the context of ex-
perimental dynamos using liquid sodium, at Rm = 100,
the kinetic Reynolds number of the flow will reach 107,
which is far out of range of any direct numerical simu-
lation. This is why scaled down water experiments are
needed to measure the mean flow velocity field, to esti-
mate the mechanical torque necessary to drive the flow as
well as the dissipated power. Although the chaotic proper-
ties of the flow may play an essential role for the dynamo
action in specific configurations, there is presently no way
to determine the time dependent turbulent velocity field.

An alternative to the fully nonlinear dynamo solution
is the “kinematic” approach, where the flow is considered
as given in the evolution equation of the magnetic field.
Starting with a weak seed field, this approximation is valid
as long as the magnetic force field remains small. A bet-
ter contact with experiments may be obtained if the time
dependent solutions are obtained, instead of choosing to
solve an eigenvalue problem. In this case, for flows at mag-
netic Reynolds numbers below the critical value, one may
study the magnetic response to external magnetic fields,
possibly time-dependent, in order to get an experimental
estimate of the critical Rm. Finally, note that while the
nonlinear simulations need a challenging amount of nu-
merical ressources, the parameter space may be explored
more rapidly and thoroughly using the kinematic solution.
When following an optimization procedure, this is a mean-
ingful practical point. A typical example is given below by
the variation of the thickness of an high conductivity blan-
ket, which allows to reduce the critical Rm.

3.2 The kinematic dynamo code

As explained above, we consider that the velocity field is
known in a cylindrical container of radius Rc. Moreover
we assume that the conductivity σ of the fluid inside the
cylinder is uniform, the external medium is insulating and
that the magnetic permeability is uniform in all space.

The induction equation is nondimensionalized using
the cylinder radius as length unit and the ohmic diffusion
time

td = µ0σR
2
c

as time unit. The induction equation reads then

∂tB = Rm∇× (U × B) + ∇2B.

Notice that the initial magnetic field must satisfy

∇ · B = 0.

Boundary conditions are implemented as follows. The
magnetic field must be continuous at the cylinder bound-
ary, from Maxwell equations. The external field is curl-
free and derives from an harmonic scalar potential, which
is completely defined by, say, its gradient normal to the
cylinder, i.e. the magnetic field orthogonal to the bound-
ary. For a given conducting volume, the numerical de-
termination of the external harmonic potential from its
gradient at the surface boundary may involve substantial
numerical resources, and this is in particular the case for
a cylinder of finite length. We have chosen here to avoid
this problem by solving the induction equation for axially
periodic flows, where there is an analytical solution for
the external potential, as is also the case for the spherical
geometry.

The magnetic field has thus the following representa-
tion,

B(r, ϕ, z, t) =
∑
n,m

Bn,m(r, t) exp [i(mθ + nz)] ,

where the z coordinate (0 ≤ z ≤ 2π) has been scaled with
the axial period and the integers n et m characterize the
axial and azimuthal modes. The spatial scheme is pseu-
dospectral in the azimuthal and axial directions, and uses
compact finite differences in the radial direction.

Let us summarize now the formal organisation of the
temporal scheme. Suppose that at time ti the internal
magnetic field b(r, ti) is known: from the normal com-
ponent of the surface field b⊥(S, ti), where S is a point on
the surface r = 1, one may get the external potential for
the next time step, φ(r, ti+1)(r > 1) and the correspond-
ing tangential magnetic field is then obtained by differen-
tiation b‖(S, ti+1) = ∇‖φ(S, ti+1). These two components
are the two boundary conditions used for the integration
of the dynamo equation within the cylinder, which gives fi-
nally the internal field b(r, ti+1), (r < 1) at time step i+1.
The time scheme is second order Adams-Bashforth for the
non linear terms, while the purely multiplicative parts of
the diffusive terms are integrated exactly. The integration
variables are the three components of the magnetic field,
and this allows to follow the growth of the divergence of
the magnetic field, whose solenoidal property is not pre-
served under this algorithm (the discretized expression of
div curl is not zero). To keep the divergence small, the
numerical solution is projected, every 40 steps, say, on a
divergenceless field. Other features of the code have been
described elsewhere [30].
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Comparisons with a finite cylinder dynamo code (per-
formed by F. Stefani, RFZ, Dresden) have not shown sig-
nificant differences for the critical Rm with respect to the
simpler periodic solution having an identical aspect ra-
tio, at least for a few flow configurations which have been
tested.

4 Results

Dynamo action may take place if the energy generation by
stretching dominates the ohmic dissipation. This is mea-
sured in a loose way by the magnitude of the magnetic
Reynolds number Rm which appears after adimensional-
ization of the equation with the maximal flow speed U and
a container typical scale L. This necessary condition is use-
less to select flows which are indeed efficient dynamos, i.e.
flows with small critical magnetic Reynolds numbers. Nu-
merical kinematic dynamos are generally obtained from
successive attempts with flows given by a few velocity
components selected for analytical simplicity (see e.g. [9]).
In this section, we present numerical results obtained with
the mean experimental velocity fields presented above.

As explained in Section 4.2.2, these velocity fields
present a slight experimental asymmetry, which has a
small influence on the obtained results. We have thus pre-
ferred to first present the results with a symmetrized ve-
locity field and then to study the influence of this ad-
ditional parameter. These results first concern threshold
determination and the influence of different parameters
on it. We then give a description of the spatio-temporal
characteristics of the self-excited magnetic field mode. In
order to compare the numerical results to available exper-
imental data, we finally study the response of the system
to an external magnetic field for Rm below the dynamo
threshold.

4.1 Threshold determination

For a given experimental configuration, the mean velocity
field shape is fixed, and cannot be varied. As indicated in
Section 2, varying the propellers rotation rate, we are only
modifying Rm in the induction equation, but not the field
shape. The effect of turbulence is not taken into account.

For each experimental velocity field, we have per-
formed a series of numerical runs with the kinematic dy-
namo code, at different Rm, and checked the energy evo-
lution of each mode m,n, defined as follows:

En,m(t) =
∫ 1

0

|Bn,m(r, t)|2rdr ∼ eσn,mt.

Note that the different azimuthal m-modes are decoupled,
since only axisymmetric flows are considered. Self excita-
tion is achieved when the energy En,m grows in at least
a single mode without external magnetic excitation that
is if σn,m > 0 for at least a pair n,m. If σn,m < 0 ∀n,m,
ohmic diffusion dominates.
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Fig. 4. Temporal evolution of the energy of modes m = 1; n =
0, .., 5 for TM28 propeller. (a) Rm = 100 < Rc

m (b) Rm =
140 > Rc

m. The time unit corresponds to the ohmic diffusion
time. Two different regions can be distinguished: for t/td ≤ 1,
relaxation of the fast stable modes; for t/td ≥ 1, relaxation of
the slow stable modes (a), or growth of the unstable modes (b).
Note that in both cases the evolution is exponential with a
growth rate σ < 0 (a) and σ > 0 (b).

Figure 4 displays the evolution in time of En,m for
m = 1 and n = 0, ..., 5 for the velocity field labelled TM28
under and above threshold. The initial condition is:

En,m(t) =




1.0 when m = 0, 1, 2, 3; n = 0
0.2 when m = 0, 1, 2, 3; n = 1, ..., 7
0.0 in any other case.

In both cases, a transient regime corresponding to the
relaxation of the initial field is observed until t � td. For
Rm < Rc

m, the energy in all modes decreases in time, i.e.
the growth rates are negative (Fig. 4a). For Rm ≥ Rc

m,
the energy of some modes begins to grow (Fig. 4b). The
critical magnetic Reynolds number Rc

m is defined as the
value for which at least one growth rate is greater or equal
to zero. For the velocity fields tested, self-excitation al-
ways appears through the m = 1 mode. Remember that,
as the flow is axisymmetric, an axisymmetric (m = 0)
self-excited magnetic field is forbidden by anti-dynamo
theorems [1].

In the following, for numerical efficiency, a different
initial condition has been used, namely the (solenoidal)
eigenmode of the vector Laplacian which is closest in
shape to the most unstable mode of the induction equa-
tion (cf. Sect. 4.2). The energy is thus initially distributed
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Fig. 5. Energy growth rates σr for the most unstable mode
(n = 1 and m = 1) as a function of Rm. Crosses (resp. circles)
correspond to the symmetrized velocity field of TM28 (resp.
TM60) propeller. The TM28 propeller gives rise to dynamo
action for Rm � 120 whereas TM60 does not.

on the m = 1, n odd Fourier modes. This leads to the near
elimination of the transient regimes of Figure 4. The vari-
ation of the maximal growth rate is presented in Figure 5
as a function of Rm for the two velocity fields of Figure 3.
The velocity field corresponding to propeller TM28 ex-
hibits a growth rate that crosses the zero line forRc

m � 120
and gives rise to dynamo action. On the contrary, for the
propeller TM60, the growth rate remains negative: it sat-
urates for Rm � 80, and then decreases again. This latter
result corresponds to a non-dynamo velocity field. Per-
forming simulations for Rm up to 300, we have observed
that the growth rate for TM28 (resp. TM60) keeps in-
creasing (resp. decreasing). At those large values of Rm,
simulation results are not accurate enough to obtain a pre-
cise scaling of σ(Rm). A linear scaling of σ with Rm would
indicate a saturation of σ, if expressed with the convective
time unit td/Rm.

The existence and the exact value of Rc
m strongly de-

pends on the characteristics of the velocity field and on
the boundary conditions. To investigate this dependence,
we have modified different parameters. First, the veloc-
ity fields have been modified in a controlled manner in
the numerical simulations, changing the ratio between the
poloidal and toroidal velocity components. We have then
investigated the effect of a conducting layer (with various
thicknesses) surrounding the flow container.

4.1.1 Ratio between the poloidal and toroidal velocity
components

Because of the flow axisymmetry (see Sect. 2.2), we can
keep the solenoidal character of the flow, when changing
the ratio Γ = |Upol| / |U tor| where

|Upol,tor| =
∫

V

|Upol,tor| r dr dz
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Fig. 6. Energy growth rates σr for the mode n = 1 and
m = 1 as a function of the mean poloidal-to-toroidal ratio
Γ = Upol/Utor for various Rm. The plotted data correspond
to the symmetrized TM28 velocity field which as a natural
ratio Γ = 0.71.

and look at the effect of Γ on the critical magnetic
Reynolds number. The Γ parameter strongly affects the
growth rates, as can be observed in Figure 6 for TM28
propeller: a negative growth rate can become positive and
vice versa. Most of the studied velocity fields present a
maximum growth rate for Γ � 0.75. This result is re-
covered for both dynamo and non-dynamo velocity fields
such as the TM60. The optimal value Γopt corresponds
nearly to the experimental value for the TM28 propeller
(Γexp = 0.71), while it is different in the case of TM60
propeller (Γexp = 0.82).

In a von Kármán flow, this parameter can be adjusted
within certain limits in various ways e.g. by changing the
diameter of the disc or the curvature of the blades (cf.
Tab. 1) or by fitting baffles located on the cylinder wall.
Four baffles can be placed parallel to the cylinder axis at
azimuthal intervals of π/2. These baffles break the axisym-
metry of the problem, making it necessary to measure the
full three-dimensional velocity field. This also imposes a
higher resolution in the azimuthal direction in the code,
making simulations more time-consuming. We have not
performed systematic exploration of these effects, and will
not present here the corresponding results.

Figure 6 also reveals a difference in the variation of
the growth rate with Rm depending on the value of Γ .
For Γ � 0.5, σ varies almost linearly with Rm, while for
Γ � 1, σ seems independent of Rm.

4.1.2 Conducting layer

It is empirically known that a stagnant layer of conducting
material surrounding some fluid dynamos may reduce the
critical magnetic Reynolds number. In the case of the Riga
experiment [3], this has also been numerically verified by
Stefani et al. [37]. The example of the Ponomarenko dy-
namo has been systematically examined in [39], varying
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Fig. 7. Conducting layer effect: Maximal growth rate σr as a
function of Rm for different layer thicknesses W = (Rext/Rc)−
1; symmetrized velocity field of propeller (a) TM28 and (b)
TM60.

the thickness of the static conducting layer, and the au-
thors show that there is an optimal thickness leading to a
lowest critical Rm. A similar configuration is available in
the VKS experiment [8] with a copper wall put inside the
stainless steel cylindrical container.

As indicated in Section 3, the numerical simulations
are performed with a conductivity which is uniform inside
a cylinder and insulating boundary conditions. A static
conductive shell of arbitrary thickness may thus be easily
introduced only if it has the same conductivity as the fluid.
If the flow lies within a radius Rc, the stationary shell
goes from r = Rc, to r = Rext, and we can use as control
parameter the relative width W = (Rext/Rc) − 1. Note
that we have chosen to present the numerical results with
the magnetic Reynolds defined with the radius Rc.

Figure 7 displays the effect of a conductive layer for
propeller TM28 and for propeller TM60. The first effect
concerns the growth rates that increase with W , until they
saturate for W = Ws � 0.2. For propeller TM28, the
threshold Rc

m decreases from 120 for W = 0 to 70 for W =
0.2 (cf. Fig. 7a). The second important effect concerns the
fact that the presence of a conducting layer can actually
change a non-dynamo velocity field into a dynamo velocity

field: Rc
m = 60 for propeller TM60 and W = 0.2, which is

actually smaller than the threshold for TM28 (cf. Fig. 7b).

4.2 Description of the self-excited magnetic field

In the following, we describe the self-excited magnetic field
numerically observed with propeller TM28. This field ap-
pears to have a very complicated spatial structure and
its temporal behaviour depends on the symmetry of the
velocity field.

4.2.1 Spatial characteristics

It is well known that a smooth velocity field with a few
spatial modes gives generally rise to magnetic eigenmodes
with a broad band spectrum, and complex spatial config-
uration, and we have verified that it is indeed the case
for the flows we have used. Although small variations of
the flow may induce large changes in the value of the criti-
cal magnetic Reynolds number, we have observed that the
overall neutral mode topology is not much altered, so that
we choose to present a single example.

As noted above, in an axisymmetric flow, the different
azimuthal modes evolve independently and close to the
critical Rm, it is the mode m = 1 which has the largest
growth rate (recall that m = 0 modes always decay). The
magnetic axial modes (n) are coupled by the kinetic ones,
so that the axial spectrum is continuous from n = 1 to
the ohmic dissipation wavenumber.

Figure 8 represents a typical example of the grow-
ing mode structure, obtained for Rm = 140, with the
TM28 velocity field, in which symmetry has been artifi-
cially imposed. Figure 8a shows the zones where the mag-
netic field intensity is higher than 50% of its maximum
value. The magnetic field appears to be strong principally
in two banana-shaped regions, located on either sides of
the cylinder axis. Figure 8b shows the poloidal component
of the magnetic field in the planeXOY of Figure 1. In that
plane, the magnetic field is roughly dipolar, oriented per-
pendicularly to the cylinder axis. This corresponds to an
m = 1 angular dependency. On either sides of the dipole,
we can see in Figure 8b the ends of the banana-shaped
regions of Figure 8a. Figure 8c shows the poloidal com-
ponent of the magnetic field in the plane XOZ of Fig-
ure 1. The magnetic field has a large amplitude in a sig-
nificant portion of the regions in this plane. The magnetic
field there is axial, and has the expected m = 1 angular
dependency. Figure 8d and 8e show the components of
the magnetic field normal to the XOY and XOZ planes,
respectively.

From all these figures, we can gather that the magnetic
field of the most unstable mode is roughly a dipole, ori-
ented perpendicularly to the cylinder axis, in the plane of
Figure 8b, normally into the plane of Figure 8e. Around
this dipole, a group of magnetic field lines comes upwards
from the bottom left-hand of Figure 8d, follows the arrows
in the top half of Figure 8c, and then goes downwards at
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XY

Z

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Y

X
(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Z

X
(c)

−0.5

−0.25

0

0.25

0.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Y

(d)

−0.5

−0.25

0

0.25

0.5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

X

Z

(e)

Fig. 8. Self-excited magnetic field of propeller TM28 for Rm = 140; symmetrized velocity field, W = 0, Γ = 0.71. (a) Isosurface
of the magnetic energy at 50% of the maximum value in the simulation volume. Poloidal component of the magnetic field in
(X, Y ) plane (b) and (X, Z) plane (c). (d) Z component of the magnetic field in (X, Y ) plane; red (resp. blue) corresponds to
vectors pointing out of (resp. into) the plane. (e) Y component in the (X, Z) plane; blue (resp. red) corresponds to vectors
pointing out of (resp. into) the plane. (Color figures are available in the online version of the article.)
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for Rm = 160 as a function of the symmetry parameter of the
velocity field ε as defined in the text. Symmetrized velocity
field of TM 28 propeller which has a natural parameter ε = 1,
is defined on the even component of the velocity field.

the top right-hand of Figure 8d. The m=1 angular depen-
dency implies that another group of magnetic field lines
goes in the converse way, going into the bottom right-hand
of Figure 8d, to the left in Figure 8c, and then upwards
in the top left-hand corner of Figure 8d.

The electric current distribution associated to this
magnetic field structure is also quite similar in all situ-
ations. The electric currents concentrate in an elongated
cylindrical region, located between the two regions of large
magnetic field amplitude. Inside this region, the currents
point perpendicularly to the axis, in the same direction as
the magnetic field dipole.

4.2.2 Temporal characteristics

We have observed that the growth rate of the most unsta-
ble mode can have an imaginary part. The corresponding
frequency is associated with a rotation of the magnetic
field around the cylinder axis. This frequency is very sen-
sitive to the level of symmetry of the velocity field. In fact,
for a very symmetric velocity field such as the TM28, the
neutral mode is nearly stationary, whereas for strongly
dissymetric ones the growth rate can have a much larger
imaginary part.

In order to study this dependency, we have separated
the TM28 velocity field into two parts U even and Uodd de-
fined by their parities with respect to the rotation around
the OP axis of Figure 1.

In the case of TM28, we have checked that the velocity
field odd component Uodd, being mainly due to experi-
mental imperfections, is small compared to the even com-
ponent Ueven: Uodd � 0.1Ueven. We have then performed
simulations of the composite flow U = U even + εUodd for
various values of ε, while keeping the Rm based on U even

at a constant value of 160. The value ε = 1 corresponds
to the experimental TM 28 flow.

The dependency of the imaginary part of the growth
rate on ε is shown in Figure 9. We can see that this depen-

dency is very nearly linear, and that ε = 0, which means a
perfectly symmetric flow, is associated with a stationary
magnetic field neutral mode. This behaviour is observed
with other velocity fields and seems to be robust in von
Kármán type flows. Note that the real part of the growth
rate presents a small variation with ε.

4.3 Magnetic induction by an external field

In the following, we want to address the following ques-
tion: is it possible to use the magnetic response of the
experimental flow below Rc

m to an external magnetic field
to predict the value of Rc

m?
The kinematic code and the experimental velocity

fields can be used to obtain the response of the system
to an external magnetic field B0 and to perform a com-
parison with sodium experiments. We have checked the
response to two different external magnetic fields: an ax-
ial field, parallel to the axis of rotation (along X) or a
transverse field, orthogonal to the rotation axis (along Y ).

In both cases, we have performed global and local mea-
surements. We have first determined the decay times of the
energy of each mode, and the saturation value of the mag-
netic field induced inside the numerical box. In order to
make a quantitative comparison with the results obtained
in the VKS experiment, we have then studied the local
components of the induced magnetic field at a particular
point in the experiment (point P of Fig. 1).

For the magnetic fields applied in the VKS experiment,
the interaction parameter N defined as the ratio of the
Lorentz forces to the pressure forces [8]

N =
σB2

0L

ρU

is much less than unity (10−4 < N < 10−2). We can thus
neglect the Lorentz forces (there is no back-reaction from
the magnetic to the velocity field) and the sodium velocity
field remains similar to the one used in the computations.

4.3.1 Magnetic energy measurements

Each numerical run is performed for a given velocity field
as follows. The initial condition corresponds to no mag-
netic field inside the cylinder. At t = 0, an external mag-
netic field is switched on and we let the system evolve in
time. This transverse field is directed along Y . It is sinu-
soidal with a n = 1 axial dependency and its maximal
amplitude is 1. We have chosen this external field struc-
ture because a uniform (n = 0) transverse field, which
would have been easier to implement, as well as closer to
the experimental setup, is orthogonal to the growing mag-
netic field eigenmodes we have observed. This feature is
specific to the axially periodic induction code.

For small t, the external field enters the cylinder, until
it approaches asymptotically a stationary saturated state
of energy Esat (see Fig. 10, for t < 1, m = 1, n = 0 − 3):

E(t) = Esat (1 − exp(−t/τsat))



L. Marié et al.: Numerical study of homogeneous dynamo based on experimental von Kármán type flows 479
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m. The external field is
applied for 0 < t < 1. It has an n=1 axial dependency, and has
a maximal amplitude of 1.

where τsat is the saturation characteristic time. This time
diverges at the dynamo threshold of the TM28 system.
After the stationary state has been reached, the external
field is disconnected, and we look at the magnetic energy
decay time (see Fig. 10, for t > 1):

E(t) = Esat exp(−t/τdecay).

Figure 11 shows the variation of the decay characteristic
times τdecay and the saturation value of the magnetic en-
ergy with Rm. Both quantities diverge for TM28 propeller
near Rc

m = 120 while they saturate near Rm = 80 and
then decrease for TM60 propeller. We found that, below
Rm = 60, theses features do not appear in practice to be
good candidates to discriminate between a dynamo and a
non dynamo velocity field.

4.3.2 Local magnetic field measurements

The spatial structure of the magnetic field in the presence
of the transverse magnetic field is represented in the plane
(XOZ) in Figure 12. For Rm = 50, the structures of the
two magnetic fields look similar, and the intensity of the
induced field appears to be slightly larger for TM28 than
for TM60 velocity field. The difference between the two
fields increases with Rm. For Rm = 80, the amplitude of
the magnetic field corresponding to TM28 appears to be
twice that corresponding to TM60. Spatially, a spreading
of the magnetic field is observed in the case of TM60, while
strong gradients along X can be evidenced for TM28, with
an inversion of the magnetic field close to the disks.

We have studied the magnetic field induced at the
point P of Figure 1 by an external axial or transverse field
in the symmetrized TM28 and TM60 flows. This point cor-
responds to the main measurement location in the VKS
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Fig. 11. variation of (a) the energy decay time τdecay and (b)
the saturation value of the magnetic energy En=1,m=1

sat as
a function of Rm for an external transverse magnetic field.
Crosses: TM28 propeller; circles: TM60 propeller. Note that
both the decay time and the energy diverge when TM28 ap-
proaches threshold (dotted line).

experiment [8]. In Figure 13, we have plotted the variation
of the three components of the magnetic field as a function
of Rm. We can see that in all cases the Z-component of
the magnetic field is equal to zero. We have checked that
this is a consequence of the symmetry of the flow [25].

In the case of an axial external magnetic field
(Figs. 13a and b), the magnetic field components increase,
then saturate for Rm � 30 and eventually decrease to zero
for both propellers. This behaviour is akin to the expul-
sion of poloidal magnetic field expected in poloidal circu-
lation [1] in spite of the existence of a toroidal flow.

For a transverse field, Figures 13c and d show that, for
the TM28 velocity field which gives rise to dynamo action,
the amplitude of the induced magnetic field components
diverges as one approaches the threshold. Conversely, in
the case of the TM60 velocity field, which does not lead
to dynamo instability, the amplitudes remain bounded.
Indeed we can see that the magnetic field components in-
crease for an interval in Rm, then saturate for Rm � 80,
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Fig. 12. Representation in the plane (X, Z) of the BY component of the magnetic field in the presence of an external transverse
magnetic field varying sinusoidally along the axis (reprented schematically by the central cross). Propeller TM28, symmetrized,
W = 0, Γ = 0.71: (a) Rm = 50 and (b) Rm = 80. Propeller TM60, symmetrized, W = 0, Γ = 0.82: (c) Rm = 50 and (d)
Rm = 80. Blue (resp. red) corresponds to vectors pointing out of (resp. into) the plane. (Color figures are available in the online
version of the article.)
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Fig. 13. Asymptotic values of three components of the magnetic field at position P as a function of Rm. Diamonds, squares
and triangles respectively refer to BX , BY and BZ . Response of the TM28 (a) and the TM60 (b) symmetrized velocity field,
to an axial magnetic field. Response of the TM28 (c) and the TM60 (d) velocity field, to a transverse magnetic field varying
sinusoidaly along the axis.
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and eventually start to decrease. Inspection of the growth
rates shows that the magnetic field growth rate, while
remaining negative, has a maximum for the same value
of Rm (cf. Fig. 5).

5 Discussion

5.1 Status of the von Kármán flow with respect
to other dynamo flows

Starting from an experimentally produced flow, we have
shown that it may produce kinematic dynamo action
above some critical Rc

m, which could no be reached up
to now in the VKS experiment due to insufficient driving
power. It is instructive to examine how these results com-
pare with other known laminar axisymmetric dynamos,
on the one hand, and available experimental dynamos, on
the other hand.

Most numerical dynamo flows in a finite volume are
produced in a spherical container, since the magnetic
transmission conditions at the conducting-insulating in-
terface are easier to implement. For example, the Von
Kármán flow has the same symmetry properties as the
spherical configuration denoted s2t2 by [9], which has a
Rc

m = 54 with the particular radial function chosen by
these authors. The same spherical s2t2 configuration has
been chosen for the Maryland [12,13] and the Madison
experiment [16], which use two counter-rotating coaxial
turbines set in motion by two motors to drive the flow.
The Maryland experiment uses a 30 cm diameter sphere
and has not produced dynamo action. The Madison in-
stallation is based on a one meter diameter sphere, where
the velocity field could be measured using water as a fluid
in a first step and the driving configuration has been op-
timized with the help of a kinematic dynamo code to get
Rc

m = 100. The liquid sodium installation is almost ready
to be set in operation.

The two existing experimental dynamos in Riga and in
Karlsruhe were based on flows of previous theoretical in-
terest as occurrence of dynamo action in these flows may
be proved analytically. They are not axisymmetric but
involve helicoidal streamlines winding around unbounded
cylinders, the conducting fluid filling all space. In the ex-
perimental devices, the flow is constrained by cylindrical
pipes of finite length, with guiding blades (Riga) or inter-
nal helicoidal walls (Karlsruhe) and occupies obviously a
finite volume container. In both cases, the design studies
have concentrated on the search of a lower Rc

m. Although
the two configurations are very different, they lead to com-
parable critical magnetic Reynolds numbers based on a
flow maximal speed V and a typical scale for the conduct-
ing fluid :

– Riga experiment: Rc
m � 61, with V = 15 m/s, L = 0.4

m (L = external cylinder radius)
– Karlsruhe experiment: Rc

m � 36, with V = 4 m/s,
L = 0.9 m (L = container radius)

Recall from Section 4 that Rc
m around 60 (resp. 70)

has also been found for the TM60 (resp. TM28) flow with

the adjunction of a conducting shell W = 0.2, so that the
lowest Rc

m are indeed comparable for these cylindrical dy-
namos. There remains however a fundamental difference
between these MHD flows at large Rm: the turbulence
level varies from a few percent for the flows with inter-
nal walls to 40% for the VKS configuration, where the
flow is not guided. In the latter case, it has been veri-
fied that the power scales as R3

m [8], in agreement with
dimensional analysis arguments. To reach the numerically
predictedRc

m, one has thus to overcome a power challenge:
this is the price to pay to drive a flow without the con-
straint of internal walls, such that its non linear saturation
regime could have a link with those observed in natural
dynamos.

5.2 Threshold: comparison with VKS experiment

The kinematic dynamo simulations based on experimen-
tal mean velocity fields of von Kármán flows exhibit the
existence of self-excitation in some range of parameters
that can be compared to experimental results of the VKS
experiment. The minimum threshold value Rc

m � 60 is
found for the TM60 propeller, with a 20% layer of liq-
uid at rest. These numerical results correspond to a 4 cm
sodium layer of conductivity σNa at rest, whereas the ex-
periment is performed with a 1 cm thick copper boundary
of conductivity σCu � 4σNa. Note that as far as the ohmic
diffusion time is concerned, we expect 4cm of sodium to
correspond to 2 cm of copper.

Using the following definition for the experimental
magnetic Reynolds number:

Rm = µ0σEfR
2
c2πf. (1)

Rc
m = 60 would correspond to a critical rotation frequency

f c = 44 Hz in the VKS experiment (Rc = 0.205 m, TM60
propeller [8]). This last value can be compared to the
maximum frequency obtained in the sodium experiment
f = 25 Hz. As the flow is highly turbulent, the power
needed to maintain the flow scales as [38]:

P = KPρL
2U3 (2)

where KP is a dimensionless factor that depends on the
geometry of the container and of the shape of the pro-
pellers. We can write the magnetic Reynolds number as:

Rm = µ0σEf

(
PL

KPρ

)1/3

· (3)

Going from 25 to 44 Hz thus implies to increase the power
or the scale of the experiment by a factor 5, that is P =
750 kW or Rc = 1m.

In the case of the TM28 propeller, the minimum
threshold value is Rc

m � 70 which corresponds to a criti-
cal f c = 41 Hz. This lower value of the critical frequency
of rotation can be related to the efficiency of propeller
TM28 that is superior to that of TM60. In fact, the impor-
tant parameter of a flow configuration is given by the ra-
tio Ef/K

1/3
p , and a minimum Rc

m does not necessary cor-
responds to the most easily achievable critical frequency.
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5.3 Sensitivity to configuration parameters

5.3.1 Propellers

One aim of this work is to test the effect of various char-
acteristics of the velocity fields on the existence and the
value of the critical magnetic Reynolds number Rc

m. One
method would be to try different velocity fields that can
be obtained from analytical expressions, or to modify con-
tinuously an experimental one. A continuous optimization
could be performed in this way until the velocity field with
the minimum Rc

m is obtained. However, in a real system
with no guiding walls, it is a technological challenge to
design a propeller able to reproduce the numerically opti-
mized velocity field.

We have taken an experimental approach having in
mind a possible sodium experiment. Consequently, we
have not varied a configuration in a continuous manner
but tried several driving configurations. Although the pre-
sented results concern only two different propellers, we
have tested approximatively 30 other configurations. Vari-
ous parameters have been varied: the height and curvature
of the blades, the propeller diameter, and other character-
istics. Nevertheless, the presented cases correspond to rep-
resentative ones, and enlighten the fact that two very close
velocity fields can have very different dynamo properties.
The results do not reveal which characteristics a propeller
must fulfill to produce dynamo action, but nevertheless
some conclusions can be drawn.

The poloidal to toroidal ratio appears to be a crucial
parameter to obtain a dynamo velocity field, as already
known from other numerical studies, in various geome-
tries. The condition Γ � 0.75 (see Fig. 6) corresponds to
a maximum growth rate for the explored velocity fields,
but it is not a sufficient condition. No dynamo action has
been observed with velocity fields with Γ < 0.6 or Γ > 0.9.
The intuitive idea is then to obtain propellers with an ap-
propriate Γ . This can be tried by changing the propeller
geometry, the curvature of blades or by placing baffles in
the inner part of the cylinder of the water experiment, i.e.
parallel to the generatrix. In this case, the toroidal com-
ponent of the velocity field could be reduced, and, maybe,
converted into poloidal velocity. The cost to be paid is that
the velocity field is no more axisymmetric. In fact, the in-
troduction of baffles greatly changes the flow pattern, and
the results are far more complicated than expected: the
poloidal component — and consecutively Γ— can even
decrease with baffles.

The relation of Γ to the dynamo properties of the
flow may be appreciated with the help of the following
toy model: Assume that the toroidal velocity at scale l is
coupled to the poloidal part of the magnetic field to in-
crease the toroidal field, as is the case in a pure differential
rotation:

dBtor

dt
=

(utor

l

)
Bpol,

and, conversely, for the poloidal component:

dBpol

dt
=

(upol

l

)
Btor.

For a given total “velocity”utor + upol, the fastest growth
rate (at scale l) is obtained when utor = upol, i.e. Γ = 1.
This very crude argument based on two scalar variables
may in principle be examined further using numerical
computations.

5.3.2 Conducting layer

In the Section 4.1.2, we have observed that the magnetic
energy growth rate increases with a conductive layer. As
the induction equation is a linear equation, the energy
evolution can be described by the equation ∂tE = σn,mE
where σn,m is the growth rate of a given mode. This
growth rate comes from a competition between the mag-
netic field generation, in some way proportional to Rm E
and the ohmic diffusion. This term takes into account
the dissipation produced by the currents j in the conduc-
tive volume (−∇ × j = ∇2B), and then is proportional
to E/L2, where L is the spatial scale of the diffusion. For a
conducting shell (with the same conductivity of the fluid)
of size L > Rc, we can write L = Rc(1 +W ) and then the
growth rate takes the form: σ ∼ Rm− 1

(1+W )2 , as shown in
Figure 7. The effect of the conducting wall saturates, but
the exact values at which this effect is negligible depends
on the velocity field, and we are not able to obtain it. This
effect has been studied numerically in a recent work [39].
This work shows that, for time dependent solutions, this
effect can be perturbated by a skin effect, that reduces the
effective volume where the dissipation takes place. In our
case, as we are looking for a stationary magnetic field (see
Sect. 4.2.2), this skin effect does not appear.

5.3.3 Symmetry

In order to explain the temporal characteristics presented
in Figure 9, we develop the following arguments based
on the symmetries of the flow. When the flow is exactly
even with respect to rotation of angle π around the OP
axis of Figure 1, axial symmetry implies that it is even
with respect to rotation of angle π around any axis going
through O and perpendicular to the cylinder axis. If the
magnetic field itself is even with respect to the rotation
of angle π around such an axis, so will its time deriva-
tive ∂tB. This means that if a magnetic field is even with
respect to rotation around such an axis, it will remain so.
Such a magnetic field must be either stationary, or pulsate
in place.

For a symmetrized velocity field and in the studied
parameter range (i.e. Γ > 0.5 and Rm < 200), the pre-
ferred structure for the magnetic field eigenmode is invari-
ant with respect to rotation of angle π around the dipole
axis. The magnetic field is then stationary at threshold. If
the flow does not have the required symmetry, the above
argument does not apply. The most general case is then
that the magnetic fields will rotate around the cylinder
axis, hence be time-dependent.

We can check these arguments against the numerical
results of Dudley and James [9]. In the case of their s2t2
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flow, which has a structure close enough to that of a
von Kármán flow, and possesses the required symmetry
properties, the magnetic field eigenmode is stationary at
threshold. Conversely, in the case of the s2t1 and s1t1
flows, in which no constraints prevent the magnetic field
from rotating around the axis of the flow, the most unsta-
ble mode is always oscillating for Rm �= 0.

In the VKS experiment as in the present water ex-
periment, the symmetry can be broken very easily, and
then generically we can expect a slightly rotating mag-
netic field, if the dynamo threshold is reached. Depending
on the (slight) asymmetries, the frequency will be more or
less important.

5.4 Induction effects: comparison with the VKS
experiment

The turbines that have been used in the first runs of the
VKS experiment correspond to the TM60 propellers used
in this study. This should allow us to compare the experi-
mental data with the numerical results we have obtained,
and could provide us with a valuable check of the relevance
of our analysis process. Note however that this compar-
ison can only concern the mean values of the induction
and that the very fast and large fluctuations observed in
the VKS experiment [8] cannot be taken into account.

5.4.1 Induced magnetic field

The accuracy of the threshold determination can not be
checked, since the threshold expected with the TM60 tur-
bines is beyond available power, (see Sect. 5.2). At most
can we say that the numerical results are not disproved.
Still, the response of the flow to a small externally im-
posed magnetic field has been measured in the VKS ex-
periment, and can be compared with the results of Fig-
ures 13b and 13d. We recall that since the interaction
parameter N is small in the VKS experiment, there is no
back-reaction of the magnetic field on the flow.

Figure 14a shows the values of the magnetic field com-
ponents measured at the point P of Figure 1, with an
axial external field applied. On the same plot are shown
the numerical results obtained for an applied field that is
axial and uniform outside the cylinder and with no con-
ducting layer. We can see that the measured values of
the Y -component agree fairly well with the simulation re-
sults. The agreement is correct but not as good for the
X-component of the magnetic field. Lastly, we can see that
the Z-component of the measured magnetic field is signif-
icantly different from zero, its expected value. This seems
to imply that the symmetry considered in Section 4.3.2,
which forces the Z-component to zero, is somehow broken
in the experiment.

The results obtained for a transverse external field are
presented in Figure 14b. The transverse external field is
this time uniform outside the cylinder, with no conduct-
ing layer. We can see a strong discrepancy between the
measured and the simulated values of the X-component.
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Fig. 14. Comparison with the VKS experiment in the case of
2 counter-rotating TM60 propellers. Response to an axial (a)
and a uniform transverse (b) magnetic field. Diamonds, squares
and triangles respectively refer to BX , BY and BZ . The dark
symbols and solid lines correspond to the predicted behavior
based on the velocity field used in the experiment. The white
symbols correspond to the measured data.

Indeed, the measured values seem to be a factor of two
larger than the computed results. On the contrary, the
agreement is good for the Y -component. Finally, we can
see that the measured Z-component remains in this case
close to zero: either the symmetry is no longer broken in
these experimental runs, or the configuration is less sen-
sitive to dissymetry. Numerical runs have also been per-
formed with a W = 0.2 (see Sect. 4.1.2) conducting layer,
showing only slight differences.

Finally, Figure 15 shows the results obtained in the
case where only one TM60 turbine is rotating inside the
vessel, the second being at rest, with a transverse field ap-
plied. The agreement is this time far better than in both
the above configurations, at least for small values of the
rotation rate. The Y -component of the magnetic field de-
creases to zero. This corresponds to an expulsion of the
applied transverse magnetic field [40,1,41]. The X- and
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Fig. 15. Comparison with the VKS experiment in the case
of one rotating TM60 disk. Diamonds, squares and triangles
respectively refer to BX , BY and BZ . The dark symbols and
solid lines correspond to the predicted response to a uniform
transverse magnetic field based on the velocity field used in the
experiment. The white symbols correspond to the measured
data.

Y -components of the induced field also exhibit a quadratic
dependency on the rotation frequency. Finally, we have
checked numerically that the velocity field obtained for
one rotating disk does not give rise to dynamo action
for Rm < 200.

To sum up, we can see that the agreement between
simulation and measurements can be satisfactory in the
case where only one disk rotates, or less satisfactory in
the case where both disks rotate. The good agreement
in the case of one disk seems to imply that the numer-
ical code and the measurement process are relevant. In
the case where two disks rotate, however, we can see that
the measurement point lies precisely at the position where
the turbulence intensity is highest, and the average flow
magnitude is weakest. It may be possible that the time-
averaged velocity field is not sufficient to properly repro-
duce the experimental induction effects at this position.

5.4.2 Decay rates

It would be interesting to check the decay times presented
in Figure 11 against the experimental value. For the max-
imum value of the magnetic Reynolds number achievable
in the VKS apparatus, the magnetic field energy decays
in �0.12µ0σR

2
c � 0.05 s for TM60 propeller with no con-

ducting layer. Propeller TM28 exhibits the same decay
time (within 2%) at Rm = 50. This means that, in an ex-
periment without conducting layer, it is very difficult to
determine by pulse decay measurements alone if the tur-
bines are of the TM28 (i.e. capable of dynamo action) or
of the TM60 (i.e. incapable of dynamo action) type.

If a very large conducting layer (W = 0.2) surrounds
the experiment, however, the magnetic field energy decays

in �0.12 s for TM28, and �0.23 s for TM60. In this case,
it would be possible to determine which velocity field has
the smallest threshold by pulse decay measurements.

5.4.3 Turbulent effects?

In the VKS apparatus, the flow shows very large turbu-
lent fluctuations, which in turn induce very large magnetic
field fluctuations [8]. It is expected that under certain cir-
cumstances, such fluctuations could induce a large scale
component of the magnetic field through what is termed
an α-effect [1]. We have shown (Fig. 15) that, if only one
propeller rotates, our numerical results are quite close to
the experimental data, though the numerical simulations
have been performed with the time-averaged component
of the flow only. This good agreement could imply that,
in that case, the leading contribution to the induction ef-
fects comes from the time-averaged component of the flow.
Conversely, a discrepancy is observed in the case of two
counter-rotating disks, where the time-averaged compo-
nent of the flow is weaker, and where large vortices sweep
the measurement location. This could possibly be ascribed
to turbulence effects, either α-effect or reduction of the
electric conductivity [1,42].

6 Conclusion

The existence of dynamo effect has been recently con-
firmed in constrained flows in the Riga and Karlsruhe
experiments. The case of experimental dynamos without
internal walls remains today an open question. The numer-
ical study of von Kármán type flows shows the possibil-
ity to have self-generation of magnetic fields for magnetic
Reynolds numbers accessible to a homogeneous sodium
experiment. These flows appear to be very sensitive to
the precise driving configuration and to boundary condi-
tions. The comparison of the predictions concerning the
induction effects with the data of the VKS experiment
exhibits paradoxical results: the agreement is excellent in
the case of one disk and intermediate Rm while the results
differ in the case of two counter-rotating disks. This effect
could be due to the existence of the turbulent shear layer
in the mid-plane, which is not accounted for in the mean
velocity fields.
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