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Experimental lateral wall boundary layer behavior of a differentially
rotating split-cylinder flow
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The cylindrical wall boundary layer of a closed cylinder split in two halves at the equator is studied
experimentally. When these two parts rotate in exact corotation the internal flow is essentially in solid-body
rotation at the angular velocity of both halves. When a slight difference between the rotation frequencies is
established a secondary flow is created due to the differential rotation between both sides and restricted to
the boundary layer. This behavior of the boundary layer is compared with theoretical and numerical results
finding the “sandwich” structure of a Stewartson boundary layer. Time-dependent waves are observed near the
cylindrical wall. Their behavior for different values of the control parameters are presented. Finally, a global
recirculation mode is also found due to a symmetry-breaking induced between sides that appears because of
a slight misalignment of the experimental setup, whose characteristics are compatible with the behavior of a
precessing cylinder.
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I. INTRODUCTION

Instabilities and transition to turbulence in rotating flows
still engage much attention due to their fundamental and
practical interest (e.g., see Ref. [1]). From natural flows
(tornadoes, ocean currents) to industrial flows (industrial mix-
ers, wingtip vortices, turbomachinery), rotation is present in
many scales, most of the times ruling the dynamics of the
system. These flows can be classified as open flows (e.g., see
Refs. [2–5]) or confined flows (e.g., see Refs. [6–9]).

Regarding these confined problems, the instabilities cre-
ated in a closed cylindrical container have been extensively
studied. When the fluid is in a laminar regime, the flow created
can generate coherent structures that have been analyzed nu-
merically and experimentally [10,11]. In the turbulent regime,
the global recirculation can destabilize, and a rich dynamics
appears [8,9,12,13]. Apart from the interest as a fundamental
problem of fluid mechanics, the presence of instabilities on
these flows can affect other processes: these flows have been
used experimentally to generate the dynamo action [14,15],
and it has been observed that the presence of instabilities can
significantly affect the threshold of this effect [16,17]. These
instabilities can also affect the dynamics of inertial particles
inside these flows [18,19].

A differential rotation in a cylindrical geometry can trigger
different instabilities where the boundary conditions play a
decisive role [7,20]. But, when the background rotation is fast
enough, the Coriolis restoring force tends to restrict secondary
flows to the boundary layers [21–23]. Then the flow developed
inside the container is basically in solid-body rotation at the
mean rotation of the system.
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Focusing on these fast-rotating systems with differential
rotation Stewartson [24] studied, in the inviscous limit, the
case of a closed cylinder where the cylindrical wall rotates
slightly faster than the end walls. He found that the inner flow
is in almost solid-body rotation, and only a weak meridional
flow appears driving the flow from one end wall boundary
layer (Ekman type) [25] to the other along the cylindrical
wall boundary layer which has a “sandwich” structure with
two parts (Stewartson boundary layer): the inner part whose
thickness is O(ν1/4) and the main outer part whose thickness
is O(ν1/3) being ν the kinematic viscosity of the considered
fluid. Hocking [26] studied the problem of an infinite cylinder
split in two where one side rotates slightly faster than the
other. In this case, the meridional flow due to the Ekman
pumping is neglected. Later, van Heijst [27] studied the finite
case of the split cylinder with a differential rotation using a
boundary layer analysis in the limit of very fast rotation ve-
locity (inviscous problem) and very small differential rotation.
Gutierrez-Castillo and Lopez [28] reproduced this analysis
numerically in two dimensions (axisymmetric flows) and
extended it for large but finite rotation velocities (nonlinear
viscous problem) and larger differential rotations studying the
stability of the main flow. Later this numerical analysis was
extended in three dimensions [23] finding nonaxisymmetric
instabilities. For this corotating split cylinder, the flow de-
veloped inside is in almost solid-body rotation at the average
rotation rate, as in the Stewartson’s problem, and a meridional
flow appears driving fluid from one end wall to the other with
the sandwich structure found in Ref. [24]. For a large enough
differential rotation, instabilities can appear on the confluence
of both boundary layers (end wall: Ekman type; lateral wall:
Stewartson type) and propagate through the cylindrical wall
creating periodic or quasiperiodic states [28].

The principal purpose of this work is the experimental
study of this corotating split-cylinder configuration focusing
on the cylindrical wall boundary layer for a large range of
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parameters. We have analyzed the dynamical behavior of the
velocity components and characterized the different flow re-
gions that can be distinguished on the cavity. Finally, we have
studied a global recirculation triggered by a small symmetry
breaking of the experimental setup and whose characteristics
are similar to the recirculations present on precessing setups.

II. EXPERIMENTAL SETUP

The experimental setup consists of a horizontal hollow
cylinder which is split in two halves at midlength (see Fig. 1).
Lateral cylindrical surfaces are made of PMMA and bases are
made of aluminum. The internal radius R of the cylinder is
fixed and equal to 5 cm, but the internal length L of each half
can be modified using different aluminum bases. Methacrylate
cylindrical walls have 8.5 mm of thickness and 0.05 mm
of tolerance. Aluminum pieces have 0.1 mm of tolerance at
maximum. A gap between halves is needed in order to avoid
friction and deformation of semicylinders during rotation.
This gap is fixed and equal to 0.2 mm, and this is the only
place where a mass interchange may happen between the
inner and the outer parts of the cylinder. The split cylinder is
enclosed in a prismatic cell of 12 l filled by the working fluid.
Shafts are moved by two independent servomotors of 750 W
of power each one, allowing a rotation frequency of both
halves in the range f = 0−100 Hz. The velocity of the motors
is controlled by two servo drives governed by two waveform
function generators. The accuracy of the rotation velocity is
0.01% of the desired velocity. With this configuration, the
halves of the split cylinder can rotate in corotation or in
counter-rotation and their rotation velocity can be equal or
not. The fluid used as working fluid is water at a controlled
temperature. This temperature is taken into account in order
to determine the viscosity.

The experimental velocity field developed inside the split
cylinder is measured using a 1D LDV system (514.5 nm)
with an ellipsoidal measurement volume of 1.7 mm of major
axis and 90 μm of minor axes. The LDV system allows the
measurement of two components of the velocity field (axial vz

and azimuthal vθ ), which are measured in a horizontal plane

FIG. 1. Cross section of the split cylinder inside the cell (top
view). Parts list: 1. Methacrylate semicylinders; 2. Aluminum bases;
3. Stainless steel shafts; 4. External walls of the cell. The axes
correspond to the reference frame used, and θ is the rotation around
z. θ = 0 corresponds to the plane above the symmetry axis.

that contains the axis of the split cylinder (θ = 0 or 180◦).
Due to the deflections of the laser beams crossing through
different interfaces, optical corrections are taken into account
to recover the correct value of the measured velocity. In order
to optimize the use of this technique two types of particles
have been used: silver-coated hollow glass spheres (14 μm,
ρ = 1.65 g/cm3) and polyamide seed particles (50 μm, ρ =
1.03 g/cm3). The first kind of particles have high reflectivity
but a bad density matching, and the second kind of particles
have high density matching but only 10% of the reflectivity
of the first ones. The different experiments carried out using
both kind of particles have shown no difference on the mea-
surements, so glass spheres have been chosen over polyamide
ones to improve reflectivity.

In this work, the split cylinder is rotating on corotation with
different velocities in each half. To establish the velocities of
the experiment a main rotation velocity � is selected in both
halves and a differential rotation velocity ω (ω < �) is added
or subtracted depending on the half (� ± ω). We start each
experimental run from the fluid at rest. The desired velocity
of each half is set in the drives and, then, the servomotors are
switched on at the same time. They reach the required velocity
in 0.2 s. The measurements start ∼15 min after switching the
motors on.

We have three experimental dimensionless control param-
eters that describe the state of the split cylinder, including its
geometry. The first one is the Reynolds number defined using
the main rotation velocity, Re = �R2

ν
, where ν is the kine-

matic viscosity of the working fluid [29]. Re has been varied
in the range Re ∼ 4 × 103−2 × 104. The second parameter
is the Rossby number that establishes a relationship between
the main and the differential angular velocities, Ro = ω

�
. Ro

has been varied in the range Ro ∼ 0−0.4 where Ro = 0
represents the exact corotation case. For this Ro = 0 the
split cylinder has reflection symmetry respect to a equatorial
plane (z = 0). This symmetry is broken when a Ro �= 0 is
established. Finally, the geometrical parameter is the aspect
ratio of the experimental volume, � = 2L

R , which has been
fixed to 2 in this work.

III. EXPERIMENTAL RESULTS

For Ro = 0 the expected behavior is just a flow in solid-
body rotation at � with perfect reflection symmetry in the
equatorial plane for the range of studied Re. When a Ro �= 0
is set, then the flow keeps this solid-body rotation far from
the cylindrical walls. In this second case, the boundary layer
of the bases (Ekman type) and the boundary layer of the
cylindrical wall (Stewartson type) [25] meet on the corners
and an instability in the form of periodic or quasiperiodic
states can appear and propagate from the faster corner to the
slower corner depending on the Ro according to Refs. [23,28].
Hence, the zone near the cylindrical wall has to adapt its
angular velocity from the solid-body rotation (�) to the wall
rotation (� ± ω). In this situation, a weak axial velocity has to
appear near the cylindrical wall driving the instability from the
faster to the slower corner. In this work, we have studied only
the cylindrical wall boundary layer and not the Ekman one
at the end caps due to the difficulty of measuring the experi-
mental velocity field near the bases. All results are presented
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FIG. 2. Time-averaged dimensionless azimuthal velocity (inter-
polated field) in a horizontal plane (half-planes with θ = 0◦ and
180◦) at a refined mesh of 91 × 101 points (one point each mm) for
Re = 1.4 × 104 and Ro = 0.2. There are 25 linearly spaced contour
levels in the range Uθ ∈ [−1.2, 1.2], where a positive sign is used to
mean that Uθ goes out of the plane, and a negative sign means that Uθ

goes into the plane. The white thick curve corresponds to the contour
level Uθ = 0.

nondimensionalized using the characteristic velocity V = �R
(dimensionless velocities are denoted as u).

The time-averaged dimensionless azimuthal velocity
Uθ (r, z) = 〈uθ (r, z, t )〉 shown in Fig. 2 is obtained using the
LDV system in a mesh of 6 × 11 (z × r) equispaced points
(−45 mm � z � 45 mm and −50 mm � r � 50 mm). The
time average, denoted as 〈·〉, is computed for each point along
the whole acquisition time (for the case considered, 120 s per
point). The measurement is performed in a horizontal plane
(composed of two half-planes with θ = 0◦ and θ = 180◦) for
Re = 1.4 × 104 and Ro = 0.2, and it is refined in a 91 × 101
points mesh before being plotted. Here the azimuthal flow
presents a big internal bulk (−40 mm < r < 40 mm), which
is in almost solid-body rotation at � and a zone near the
cylindrical wall (−50 mm � r � −40 mm, 40 mm � r �
50 mm) which adapts its angular velocity from that of the wall
� ± ω to the solid-body rotation velocity � (this behavior can
be compatible with the Basic State described in Refs. [23,28]).
This azimuthal average flow is observed for the whole range
of Re and Ro explored.

Nevertheless, the time-averaged azimuthal velocity con-
tour lines presented in Fig. 2 are not parallel to the axis of
rotation as would be expected in solid-body rotation. Instead,
they are tilted breaking the expected reflection symmetry in
the equatorial plane. This behavior will be discussed below
and does not affect the boundary layer.

The mean flow is measured using a coarse mesh that cannot
capture the complexity of the boundary layer. The region
where the velocity changes from � to � ± ω seems to be of
the order of 1 cm in Fig. 2 because of the acquisition mesh. To
better characterize this boundary layer, the azimuthal velocity
is measured along the radius for different axial positions with
a very high spatial resolution (one measurement each 0.2 mm)
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FIG. 3. PDFs of the dimensionless azimuthal velocity uθ along
a radius at z = 40 mm for Re = 2 × 104 and Ro = 0.1. The dashed
line represents the solid-body rotation uθ = (1 + Ro)r/R with a ro-
tation frequency � + ω, and the dotted line represents the solid-body
rotation usolid

θ (r). Inset: Detail of the velocity near the cylindrical wall
(zoom of the marked rectangle) where the red points correspond
to individual velocity measurements, and the hollow black points
represent the means of the PDFs.

to really catch its behavior, using an acquisition time of 240 s
per point.

We present an example of this behavior in Fig. 3 at z =
40 mm for Re = 2 × 104 and Ro = 0.1. In order to have a
global view of the behavior of the velocity, the probability
density functions (PDFs) of the dimensionless velocity are
presented each 0.4 mm. The expected behavior of the ve-
locity consists of a central region where the fluid will rotate
in almost solid-body rotation usolid

θ (r) = r/R = (�r)/(�R)
(dotted line), and an external shell, the boundary layer (whose
thickness is �BL), where the fluid adapts its velocity to that of
the lateral wall u±

wall = (1 ± Ro) = (� ± ω)R/(�R) (dashed
line) where the sign considered depends whether we are close
to the fast (+) or slow (−) hemicylinder.

But in our experiment the velocity near the wall has a com-
plex dynamics. Depending on the parameters, this behavior
can be very weak, so it can be hardly detected using the PDFs.
We present our data in a different way that enhances the pres-
ence of these weak processes in the region close to the wall.
The inset details this behavior near the cylindrical wall where
each red point represents a single velocity measurement.
Using this approach, the velocity values appear concentrated
on two regions around uθ = 0.95 and uθ = 1.15 for each value
of r in the region for 47 mm < r < 48.5 mm separated by
a region where no measurements are obtained between 1 �
uθ � 1.1. Hollow black points represent the mean value of
the velocity for each region. Connecting these hollow points
we can distinguish two branches inside the boundary layer.
One branch starts at u+

wall = (1 + Ro) = [(� + ω)R]/(�R),
but then the velocity increases to a value larger than the wall
velocity u+

wall along a narrow zone (∼2 mm) and disappears
for r < 47 mm. The other branch adapts rapidly its velocity
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FIG. 4. Azimuthal velocity at z = 40 mm and r = 48 mm for
Re = 6 × 103 and Ro = 0.4. (a) Azimuthal velocity folded in time
and represented along five periods (dashed lines) using the period
2π/(� + ω). (b) PDF of the experimental dimensionless azimuthal
velocity (crosses), Gaussians fitting (solid curve), solid-body rotation
at usolid

θ (r48) (vertical solid line), and solid-body rotation at (1 +
Ro)(r48/R) (vertical dashed line).

from the faster rotation velocity (� + ω) to the main angular
velocity (�) and behaves like a solid-body in rotation every-
where but near the axis where the velocity is smaller than the
solid-body rotation velocity usolid

θ (r). It is convenient to notice
that, due to the size of the measurement volume in the radial
direction (1.7 mm), the experimental velocity obtained in each
measurement point is affected by the value of the velocities
from neighbor points increasing its standard deviation (i.e., a
convolution between the real velocity and the ellipsoidal laser
intensity distribution). Measurements performed for Fig. 3
included spurious data that correspond to reflections of the
laser beams that cross again outside the cylinder in the outer
water volume. These data, with a null velocity, have been
removed from the series before the analysis.

From now on, we will focus on the flow behavior in the
boundary layer near the cylindrical wall. This flow is studied
measuring the azimuthal velocity on six equispaced points
along the axial direction (from z = −40 mm to z = 40 mm)
at a fixed radius (r = 48 mm, from now on referred as r48)
for the Re and Ro considered, and using the LDV system
with an acquisition time of 300 s per point. In these points,
it can be observed that the azimuthal velocity has, in general,
a complex behavior, similar to the one shown in Fig. 4. In

Fig. 4(a) the azimuthal velocity series for Re = 6 × 103 and
Ro = 0.4 at z = 40 mm and r = 48 mm presents different
jumps among three different velocities. If we compare this
behavior with the one presented on Fig. 3 for r = 48 mm we
observe that now, for these parameters, we have three states
that correspond to the previous two branches. The slowest
branch is the one that connects the fast-spinning wall to the
inner solid rotation flow this state being characterized by
uθ = 48/50 = 0.96 � 1, and the fast branch where the fluid
jumps between two states, uθ � 1.18 and 1.48. These jumps
appear with a period equal to the one of the � + ω frequency,
as we are close to the fast wall [see Fig. 4(a) where the original
experimental series taken along 300 s has been zoomed in
folding the whole series along five periods 2π/(� + ω)].

The velocity on the fast branch jumps between two values
that are below and over the wall velocity [in Fig. 4, the wall
velocity is u+

wall = (1 + Ro) = 1.4]. So in the reference frame
of the moving wall the flow moves in both directions in the
azimuthal direction, this result being compatible with a vortex
or a roll. This structure is traveling near the wall and crosses
through the measurement point at specific times giving the
temporal behavior of the flow presented in Fig. 4.

The region where a coexistence of the two branches exists
is 1.5 mm long (see Fig. 3, inset). Although these results point
to the presence of both states at the same radial locations,
we would like to recall that the LDA volume is 1.7 mm
long, and so the presence of each one of these branches will
be expanded radially because of the experimental technique.
These results are compatible with an inner branch ending
around r � 47.7 mm where the boundary layer branch starts,
and then �BL � 2.2 mm.

It is expected that the behavior and dynamics of these two
regions, the inner solid-body rotation and the boundary layer,
will depend on the experimental parameters Re and Ro. In par-
ticular, we are interested on the characterization of the inner
solid rotation body when the Coriolis force is increased (large
Ro) compared to the exact corotation regime. Concerning the
dynamics of the boundary layer, we would like to analyze
the effect of the viscous forces (Re), and whether we can
detect the instability threshold of this behavior. These two
processes will be determined by the evolution as a function
of Re and Ro of the corresponding PDFs [see Fig. 4(b)].
The experimental data can be described, as expected, by a
combination of Gaussians,

PDF(uθ ) =
NG∑
i=1

ai
1

si

√
2π

exp

[
−(

uθ − ūi
θ

)2

2s2
i

]
, (1)

where NG represents the number of Gaussians used to describe
the data. ūi

θ , si, and ai are, respectively, the center, the standard
deviation, and the relative weight of each normal distribution
(where

∑NG
i=1 ai = 1). For the case shown in Fig. 4(b) the

PDF is described by the combination of NG = 3 different
Gaussians (presented as a solid curve). We will focus on the
evolution of the mean value ūi

θ of each Gaussian together with
its standard deviation si (that will determine the corresponding
error bar), but avoiding the relative weights ai (see Figs. 5–7).
The relative weight of each Gaussian ai does not represent a
correct parameter to characterize the instability, as it depends
on how many tracers are trapped in these states.
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FIG. 5. Dimensionless azimuthal velocities ūi
θ vs Re for different

Ro. Black points represent the velocities at r = 48 mm and z =
−40 mm, and hollow red squares represent the velocities at r =
48 mm and z = 40 mm. The solid line represents the solid-body
rotation at (1 − Ro)(r48/R), and the dashed line represents the solid-
body rotation at (1 + Ro)(r48/R).

We can compare, for example, the evolution of these
branches when the Re is increased for two points close to both
cylinder ends. Figure 5 shows the behavior of the dimension-
less azimuthal velocities ūi

θ as a function of Re for different Ro
at z = −40 mm (solid black points) and z = 40 mm (hollow
red squares). When Ro = 0 (left panel) the flow is in solid
rotation with a velocity that corresponds to uθ (r48) = r48/R =
0.96 (solid thick line). Please note that uθ = 1 corresponds to
the lateral wall velocity �R. Only Gaussians with a weight ai

larger than ∼5 % are retained (ai > 0.05). When the Rossby
number Ro is increased, the branches discussed above sepa-
rate and both behaviors can be distinguished: a branch moving
faster (respectively slower) than the wall when we are close
to the fast (respectively slow) cylinder, and the other branch
corresponds to the solid-rotation volume, where the Gaussians
of these solid-rotation states for both halves converge to a
value slightly below 1 when the Re number is increased. In
both (fast and slow ends) cases, the velocity presents two
states that separate when Re and Ro increase. For Ro �
0.3 a third state could appear in between depending on the
Re. On the faster side, one of these states has an angular
velocity which is higher than the solid-body angular velocity
at � + ω for r = 48 mm [and even faster than the rotation of
the cylindrical wall uθ (r48) > (1 + Ro)] corresponding to the
fastest branch of the boundary layer. Although it is clear that
those branches separate when Re increases for Ro > 0, we
cannot define a threshold value. This threshold, if any, should
be below our minimum achievable experimental Reynolds
number, Re = 4 × 103.

The evolution of these two branches also depends on the
axial position of the measuring volume. Figure 6 represents
the behavior of the dimensionless azimuthal velocities ūi

θ

as a function of Ro at the six z-locations for Re = 4 × 103

(top panels) and for Re = 2 × 104 (bottom panels). In this
figure, it can be seen a state of the velocity in the slow
cylinder (z < 0) which is smaller than the solid-body angular
velocity at � − ω, uθ (r48) = (1 − Ro)r48/R. Meanwhile, in
the fast cylinder (z > 0), there is the state which is faster
than the solid-body rotation velocity at � + ω, uθ (r48) = (1 +
Ro)r48/R. These two behaviors correspond to the branches
that connect with the wall velocities, and we can observe that

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4
Ro

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4
Ro

0 0.2 0.4
Ro

0 0.2 0.4
Ro

0 0.2 0.4
Ro

0 0.2 0.4
Ro

FIG. 6. Dimensionless azimuthal velocities ūi
θ vs Ro along the

axial direction at r = 48 mm for Re = 4 × 103 (top panels) and
Re = 2 × 104 (bottom panels). The solid line represents the solid-
body rotation at (1 − Ro)(r48/R), and the dashed line represents the
solid-body rotation at (1 + Ro)(r48/R).

there is a discontinuity when we cross from the slow to the
fast hemicylinder.

On the other hand, the bulk velocity corresponds to the
points that are closer to uθ = 1. Two different behaviors can
be observed. For Re = 4 × 103 the fastest state of the slow
cylinder approximates the solid-body velocity uθ (r48) = 0.96
when we move from the base to the gap, and then increases
to larger values when we approach the fast end. Meanwhile,
for large Re this bulk velocity is constant whatever is the
z-position, although slightly smaller than the velocity usolid

θ (r),
and approaching (r48/R)u−

wall when Ro increases. For z =
8 mm and z = 40 mm a third state of the velocity appears
between which it becomes significant when Re increases.

Figure 7 represents the behavior of the dimensionless
azimuthal velocities ūi

θ as a function of the axial position
for different Ro and for Re = 4 × 103 (top panels) and Re =
2 × 104 (bottom panels). The principal result presented is
related to the evolution of the state which corresponds to
the solid-body rotation. For small Re the velocity of this
state progressively increases from a value below the average
velocity usolid

θ (r48) when we are inside the slow cylinder to
a value above the average when we are on the fast cylinder
that rotates with a frequency � + ω. This increment of the
velocity with the axial position decreases when Re increases
and tends to a real solid-body rotation value independent of z
for the highest Re (in accordance with the Taylor-Proudman
theorem [25]). When the Re is low, the large Ro creates a
high asymmetry along the cylinder which is reduced when
Re increases. In other words, when Re is large, the boundary
layer is thinner and the solid-body rotation is reached closer
to the wall. On the other hand, the other states of the velocity
field abruptly switch from below the solid-body rotation state
in the left cylinder to above the solid-body rotation in the right
cylinder.
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sition at r = 48 mm for different Ro and for Re = 4 × 103 (top
panels) and Re = 2 × 104 (bottom panels). The solid line represents
the solid-body rotation at (1 − Ro)(r48/R), and the dashed line
represents the solid-body rotation at (1 + Ro)(r48/R).

This modulation of the velocity near the lateral boundary
layer can also appear in other components. Here we present
the radial evolution of the axial component (vz) for the same
parameters used in Fig. 3. The axial velocity is measured
each 0.5 mm using an acquisition time of 600 s per point
in order to have a good statistics of this component due to
its low value (�1 mm/s). This velocity is nondimensionalized
using V and Ro, because this component appears when Ro �=
0 [uz(r, z, t )/Ro = vz(r, z, t )/(V Ro) = vz(r, z, t )/(ωR)]. The
mean of the axial component over the Ro, Uz(r, z)/Ro =
〈uz(r, z, t )〉/Ro, is presented in Fig. 8 averaging this mean
each two measuring points (hollow black points in Fig. 8) in
order to reduce the effect of the length of the experimental
volume in the radial direction (∼1.7 mm). The dimensionless
standard deviations of these points are ∼0.01.

According to Ref. [28] the expected behavior of this com-
ponent of the velocity field is a fluctuation over a null velocity.
If we move from the wall to the interior of the flow this fluctu-
ation in the boundary layer first points from the faster side to
the slower side, then from the slower to the faster side and then
it goes back again to the slower side creating a sandwich-like
boundary layer like in the Stewartson’s problem [24].

The experimental velocity (Fig. 8) is a little more complex.
The main difference is that the experimental flow has a net
mass transport across this radius (z = 40 mm, θ = 0). For an
axisymmetric flow, this mass transport should be zero. As
a first approach, we can assume that the experimental flow
combines two different behaviors. The first one is related to
the fluctuations described before [28], and the second one
is related to a global circulation. This circulation is identi-
fied as a Kelvin mode in the cylindrical cavity [25], where
the axial dependence of the correspondent z-component is a
function of the azimuthal wave number. Our visualizations
using Kalliroscope show a m = 1 mode (stationary). Hence,
the axial component of the velocity, Uz, is separated in these

FIG. 8. Dimensionless axial velocity over Ro along a radius at
z = 40 mm and θ = 0 for Re = 2 × 104 and Ro = 0.1. Hollow black
points are the mean axial experimental velocity, the thick green
line corresponds to the Kelvin mode, and the green squares are
the fluctuations over this mode. The red dotted line represents the
theoretical profile using boundary layer theory [27], and the black
dashed line represents the null velocity.

two contributions, and it can be expressed as Uz = U ′
z + U K

z ,
where U K

z is the global Kelvin mode and U ′
z are the fluctua-

tions that do not produce a transport of mass across any radius,
so

∫ R
0 U ′

z r dr = ∫ R
0 (Uz − U K

z )r dr = 0.
We suppose a global Kelvin mode in the form U K

z =
aJ1(δi

r
R ) [25,30–32] where a is the amplitude, J1(x) is the

Bessel function of the first kind, and δi is the radial wave
number. This radial wave number is solution of the Kelvin’s

dispersion relation δiJ ′
1(δi ) +

√
1 + δ2

i

k2
i
J1(δi ) = 0 being J ′

1(x)

the x derivative of the Bessel function and ki the axial wave
number (see Ref. [25] for further details). For these calcu-
lations the corresponding wave numbers are obtained using
dimensionless radius equal to 1, and dimensionless height
equal to �. With these values, and taking into account that
the flow fills the whole container, ki has to be equal to π/�.
Hence, using this axial wave number, the radial wave number
can be obtained numerically from the previous dispersion
relation using the bisectrix method. This mode is represented
in Fig. 8 as a thick green continuous line, and the fluctuations
over this mode are represented by green solid squares.

A careful check of our experimental setup revealed that
there is a misalignment of the orientation of the shafts, and
then the axes are not coaxial, this misalignment being θaxis �
0.32◦. This breaks the axial symmetry and provokes the global
recirculation. This symmetry breaking is stationary on the
laboratory reference frame and thus produces a stationary
m = 1 mode. All the dynamics present on the experiment can
be altered by this fact, and this can explain why other modes
with higher m have not been observed. This global mode does
not affect the rest of the results as there is not a nonlinear
interaction among the global mode and the other phenomena
found.
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FIG. 9. Dimensionless azimuthal vorticity η created by U ′
z along

a radius at z = 40 mm for Re = 2 × 104 and Ro = 0.1. The black
dashed line represents the null vorticity.

The frequency of this Kelvin mode measured in the rotating
reference frame of the solid-body rotation is −0.995�, so we
can assume that, in our case, the Kelvin mode is stationary
in the laboratory reference frame, a result that corresponds to
the experimental situation. Actually, a Kelvin mode perfectly
stationary with a frequency −� is reached for an aspect
ratio of � = 1.988, slightly smaller than ours, but we are
close enough to trigger this mode in our setup due to the
misalignment. Finally, the value of the axial velocities are
compatible with the axial flow due to the different pumping of
the Ekman layers on both ends Uz/Ro ∼ Re−1/2 ∼ 0.01 [27].

These fluctuations recover the oscillating meridional flow
first pointing from the faster side to the slower one, then going
back and so on but, in the experimental case, these fluctuations
are present all along the radius, not only in the boundary layer.
We compare these values with the theoretical profile obtained
using the boundary layer theory developed in Ref. [27] for
Re = 2 × 104 at z = 40 mm (red dotted line in Fig. 8). This
boundary layer theory neglects nonlinear terms and uses
Ro � 1. In order to compare the experimental fluctuations
with the shape of the theoretical profile the same strategy
used in Ref. [33] is applied here where the theoretical profile
is rescaled to match the experimental result. Both theoretical
and experimental axial velocities are similar near the wall, but
they differ for r � 46 mm. These differences come from the
strong nonlinearities and because our Ro cannot be considered
a perturbation.

The dimensionless azimuthal vorticity η created by the
fluctuations U ′

z is also computed and shown in Fig. 9 suppos-
ing that the effects of the radial velocity over this component
of the vorticity are negligible at the measured z-position. This
vorticity is quantitatively similar to the vorticity computed in
Refs. [23,28] in their numerical simulations even taking into
account that our parameters values for Re, Ro, and � are
different. U ′

z also presents the shape described in Ref. [28]
near the lateral wall, but the quantitative comparison is not

presented because our parameters values differ from the ones
used in that work.

IV. DISCUSSION

According to the experimental data, two main phenomena
have been found in the setup: the cylindrical wall boundary
layer dynamics and the global recirculation mode.

The lateral wall boundary layer presents the classical
“sandwich” structure predicted theoretically [24] and found
numerically [28], where the two first peaks of the axial
velocity from the cylindrical wall scale with ν1/3 and ν1/4,
respectively.

But this boundary layer also has a complex dynamics near
the cylindrical wall, evidenced by the jumps in the azimuthal
component of the velocity field shown in Figs. 5–7. These
jumps correspond to the branches of Fig. 3, so it can be noted
that, depending on the Re and Ro, the dynamics can jump
or not, and the number of states can be two or more. All
jumps have a temporal behavior which supports the idea of
rolls traveling near the wall (this temporal behavior is clearly
seen in Fig. 4). Moreover, in many of these jumps one of
the branches has a velocity which is higher than the highest
velocity (1 + Ro). This is possible because the velocity field
alternates among states with different values, so the energy of
the split-cylinder flow is not higher than the injected energy,
i.e., if the mean velocity of each measurement is computed, it
remains below (1 + Ro).

Concerning the global mode, we can appreciate in the
averaged flow of Fig. 2 that the solid-body rotation zone is
tilted near the axis. This tilting can be characterized with
the angle θ f low formed between the contour line defined by
Uθ = 0 and the rotation axis when it crosses the axis (r =
0 mm) in Fig. 2. When the radius is small, the effect of this
misalignment becomes noticeable, and the velocity deviates
from the solid-body rotation. This can also be observed in
Fig. 3 for little radii.

The Kelvin modes described in Ref. [25] are obtained
for the inviscid case and cannot explain this behavior [this
theory predicts that Uθ (r = 0) = 0]. But, when viscosity is
included, the flow becomes tilted (i.e., the line where Uθ = 0
forms an angle with the axis of rotation) as has been observed
in precessing cylinders (e.g., see Refs. [30–32,34]). In those
cases, the presence of a secondary angular velocity breaks
the axial symmetry of the problem and a global mode is
created. In our case we have a similar behavior: even in perfect
corotation (Ro = 0), the misalignment θaxis = 0.32◦ breaks
the axial symmetry and then a global mode is created in the
velocity field with a tilting of θ f low ∼ 9◦ as can be observed
in Fig. 2.

Finally, we have observed that two columns appear near the
axis of the cylinder as those shown in Fig. 10. These columns
can remember the ones in Fig. 2 of Ref. [34], but we do not
have a cylinder in precession. The origin of these columns can
be different from the global mode found in the system, and
they could appear even in an ideal split-cylinder flow. But,
in this case, these columns had to be parallel to the axis due
to the lack of a deviation angle between semicylinders. This
represents a work under progress.
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FIG. 10. Snapshot of the experimental setup using Kalliroscope
for Re = 2 × 104 and Ro = 0.1 for r < 0.63R. A median filter has
been applied to eliminate the noise. The uneven illumination is
removed averaging a series of snapshots that covers the timescales of
the dynamics. Each snapshot is then divided by this average image
to highlight the dynamical behavior.

V. CONCLUSIONS

The cylindrical wall boundary layer of the split-cylinder
problem in corotation is studied experimentally and compared
with theoretical and numerical results. Due to the high Re
studied, the flow is essentially in solid-body rotation when
Ro = 0. A secondary flow develops when Ro �= 0 driven
by the difference of rotation velocities and restricted to the
boundary layers.

The azimuthal velocity has a complex behavior inside this
boundary layer consisting of regular alternative jumps among
different values of this component of the velocity field. These
alternations have been associated with waves that travel along
with the cylindrical wall in the fast (respectively, slow) cylin-
der at its rotation frequency � + ω (respectively, � − ω). On
the other hand, a differential rotation breaks the reflection
symmetry of the velocity field at the equatorial plane, but
this symmetry can be recovered at larger background rotations
(larger Re) as predicted by the Taylor-Proudman theorem.
A “sandwich-like” structure has been found in the axial
component that scales as previous results predict. But, in our
experiment, the fluctuations of this component of the velocity
field appear along the whole radius.

Finally, a stationary global mode (in the laboratory refer-
ence frame) with azimuthal number m = 1 is found related
to a little misalignment intrinsic to the current experimental
setup. This behavior can be assimilated to results found in pre-
cession experiments. Due to this forced symmetry breaking,
modes with higher m cannot occur.
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